Cho hình vẽ bên, biết \(\widehat C = 40^\circ ,\widehat D = 120^\circ ,\widehat E = 100^\circ \). Chứng tỏ \(Cx\parallel Dy\).

Cho hình vẽ bên, biết \(\widehat C = 40^\circ ,\widehat D = 120^\circ ,\widehat E = 100^\circ \). Chứng tỏ \(Cx\parallel Dy\).
Quảng cáo
Trả lời:

Kẻ \(Et\,{\rm{//}}\,Cx\).
Do hai góc\(\widehat {CEt}\)và \(\widehat {ECx}\) ở vị trí so le trong nên \(\widehat {CEt} = \widehat {ECx} = 40^\circ \) (tính chất hai đường thẳng song song)
Mà tia \(Et\)nằm giữa hai tia \(EC\) và \(ED\) nên \[\widehat {CEt} + \widehat {DEt} = \widehat {CED}\]
Hay \[40^\circ + \widehat {DEt} = 100^\circ \]
Suy ra \[\widehat {DEt} = 100^\circ - 40^\circ = 60^\circ \] (1)
Vẽ tia đối \[Dy'\]của tia \(Dy\)
Do \(\widehat {EDy'}\)và \(\widehat {EDy}\)là hai góc kề bù nên \(\widehat {EDy'} + \widehat {EDy} = 180^\circ \) hay \(\widehat {EDy'} + 120^\circ = 180^\circ \)
Suy ra \(\widehat {EDy'} = 180^\circ - 120^\circ = 60^\circ \) (2)
Từ (1) và (2) suy ra \[\widehat {DEt} = \widehat {EDy'}\].
Mà hai góc \[\widehat {DEt}\] và \[\widehat {EDy'}\]là hai góc ở vị trí so le trong .
Do đó: \(Cx\,{\rm{//}}\,Dy\) (dấu hiệu nhận biết hai đường thẳng song song).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
d) \(D = \left| {2x - 1} \right| + \left| {2x - 5} \right|\)
Ta có: \(\left| {2x - 1} \right| + \left| {2x - 5} \right| = \left| {2x - 1} \right| + \left| {5 - 2x} \right| \ge \left| {2x - 1 + 5 - 2x} \right|\)
Suy ra \(\left| {2x - 1} \right| + \left| {5 - 2x} \right| \ge 4\) hay \(D \ge 4\).
Dấu “=” xảy ra khi và chỉ khi: \(\left( {2x - 1} \right)\left( {5 - 2x} \right) \ge 0\).
TH1: \(\left\{ \begin{array}{l}2x - 1 \ge 0\\5 - 2x \ge 0\end{array} \right.\) suy ra \(\left\{ \begin{array}{l}x \ge \frac{1}{2}\\x \le \frac{5}{2}\end{array} \right.\) hay \(\frac{1}{2} \le x \le \frac{5}{2}\).
TH2: \(\left\{ \begin{array}{l}2x - 1 \le 0\\5 - 2x \le 0\end{array} \right.\) suy ra \(\left\{ \begin{array}{l}x \le \frac{1}{2}\\x \ge \frac{5}{2}\end{array} \right.\) (loại).
Vậy giá trị nhỏ nhất của biểu thức \(D = 4\) khi và chỉ khi \(\frac{1}{2} \le x \le \frac{5}{2}\).
Lời giải
a) \(A = \frac{5}{{2x - 3}}\)
Điều kiện \(2x - 3 \ne 0\) hay \(x \ne \frac{3}{2}\).
Để \(A\) có giá trị nguyên thì \(5 \vdots \left( {2x - 3} \right)\) hay \(\left( {2x - 3} \right)\) là ước của \(5\).
Mà các ước của \(5\) là: \( - 5; - 1;1;5.\)
Ta có bảng sau:
\(2x - 3\) |
\( - 5\) |
\( - 1\) |
\(1\) |
\(5\) |
\(x\) |
\( - 1\) |
\(1\) |
\(2\) |
\(4\) |
Vì \(x \in \mathbb{Z}\) nên \(x \in \left\{ { - 1;1;2;4} \right\}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.