Câu hỏi:

23/09/2025 32 Lưu

Cho hình vẽ bên, biết \(\widehat C = 40^\circ ,\widehat D = 120^\circ ,\widehat E = 100^\circ \). Chứng tỏ \(Cx\parallel Dy\).

Cho hình vẽ bên, biết \(\widehat C = 40^\circ ,\widehat D = 120^\circ ,\widehat E = 100^\circ \). Chứng tỏ \(Cx\parallel Dy\). (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Cho hình vẽ bên, biết \(\widehat C = 40^\circ ,\widehat D = 120^\circ ,\widehat E = 100^\circ \). Chứng tỏ \(Cx\parallel Dy\). (ảnh 2)

Kẻ \(Et\,{\rm{//}}\,Cx\).

Do hai góc\(\widehat {CEt}\)\(\widehat {ECx}\) ở vị trí so le trong nên \(\widehat {CEt} = \widehat {ECx} = 40^\circ \) (tính chất hai đường thẳng song song)

Mà tia \(Et\)nằm giữa hai tia \(EC\)\(ED\) nên \[\widehat {CEt} + \widehat {DEt} = \widehat {CED}\]

Hay \[40^\circ + \widehat {DEt} = 100^\circ \]

Suy ra \[\widehat {DEt} = 100^\circ - 40^\circ = 60^\circ \] (1)

Vẽ tia đối \[Dy'\]của tia \(Dy\)

Do \(\widehat {EDy'}\)\(\widehat {EDy}\)là hai góc kề bù nên \(\widehat {EDy'} + \widehat {EDy} = 180^\circ \) hay \(\widehat {EDy'} + 120^\circ = 180^\circ \)

Suy ra \(\widehat {EDy'} = 180^\circ - 120^\circ = 60^\circ \) (2)

Từ (1) và (2) suy ra \[\widehat {DEt} = \widehat {EDy'}\].

Mà hai góc \[\widehat {DEt}\]\[\widehat {EDy'}\]là hai góc ở vị trí so le trong .

Do đó: \(Cx\,{\rm{//}}\,Dy\) (dấu hiệu nhận biết hai đường thẳng song song).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Kẻ đường thẳng qua \(C\) và song song với \[AB\].

\(AB\,{\rm{//}}\,DE\) nên đường thẳng đó cũng song song với \[DE\].

Do đó \({\widehat C_1} + \widehat {ABC} = 180^\circ \)\(\widehat {{C_2}} + \widehat {CDE} = 180^\circ \) (hai góc trong cùng phía)

Do đó, \[{\widehat C_1} = 60^\circ \]\[\,{\widehat C_2} = 45^\circ \].

Suy ra \[\widehat {BCD} = 180^\circ - 60^\circ - 45^\circ = 75^\circ \].

Lời giải

Cho hình vẽ dưới đây biết \(\widehat {DCn} = 70^\circ \).   a) Chứng minh \(xy\parallel mn.\) b) Tính số đo góc \(\widehat {DCy}\). c) Kẻ tia phân giác của \(\widehat {DCy}\) cắt đường thẳng \(mn\) tại \(E\). Tính số đo góc \(\widehat {ADE}\). (ảnh 2)

a) Ta có: \(xy \bot AB\)\(mn \bot AB\) nên \(xy\parallel mn.\)

b) Ta có: \(\widehat {DCB} + \widehat {DCn} = 180^\circ \) (hai góc kề bù).

Suy ra \(\widehat {DCB} = 180^\circ - \widehat {DCn} = 180^\circ - 70^\circ = 110^\circ \).

\(xy\parallel mn\) suy ra \(\widehat {DCB} = \widehat {CDy} = 110^\circ \) (hai góc so le trong).

c) Vì \(DE\) là tia phân giác của \(\widehat {CDy}\) nên \(\widehat {CDE} = \widehat {EDy} = \frac{{\widehat {CDy}}}{2} = \frac{{110^\circ }}{2} = 55^\circ \).

\(xy\parallel mn\) suy ra \(\widehat {ECD} = \widehat {ADC} = 70^\circ \) (hai góc so le trong)

\(\widehat {ADE} = \widehat {ADC} + \widehat {CDE} = 70^\circ + 55^\circ = 125^\circ \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP