Câu hỏi:

23/09/2025 64 Lưu

Tính giá trị lớn nhất, giá trị nhỏ nhất của các biểu thức sau:

f) \(F = \frac{5}{{{{\left( {{x^2} + 3} \right)}^2} - 1}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

f) \(F = \frac{5}{{{{\left( {{x^2} + 3} \right)}^2} - 1}}\)

\({x^2} \ge 0\) với mọi x nên \({x^2} + 3 \ge 3\)với mọi x

Suy ra \({\left( {{x^2} + 3} \right)^2} \ge 9\)với mọi x

Do đó: \({\left( {{x^2} + 3} \right)^2} - 1 \ge 8\)với mọi x

Suy ra: \[C = \frac{5}{{{{\left( {{x^2} + 3} \right)}^2} - 1}} \le \frac{5}{8}\]với mọi x

Dấu “=” xảy ra khi và chỉ khi \(x = 0\)

Vậy giá trị lớn nhất của C là \(\frac{5}{8}\) tại \(x = 0\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

c) \[\frac{{x - 214}}{{86}} + \frac{{x - 132}}{{84}} + \frac{{x - 54}}{{82}} = 6\]

\[x\left( {\frac{1}{{86}} + \frac{1}{{84}} + \frac{1}{{82}}} \right) = 6 + \frac{{214}}{{86}} + \frac{{132}}{{84}} + \frac{{54}}{{82}}\]

\[x\left( {\frac{1}{{86}} + \frac{1}{{84}} + \frac{1}{{82}}} \right) = \left( {1 + \frac{{214}}{{86}}} \right) + \left( {2 + \frac{{132}}{{84}}} \right) + \left( {3 + \frac{{54}}{{82}}} \right)\]

\[x\left( {\frac{1}{{86}} + \frac{1}{{84}} + \frac{1}{{82}}} \right) = \frac{{300}}{{86}} + \frac{{300}}{{84}} + \frac{{300}}{{82}}\]

\[x\left( {\frac{1}{{86}} + \frac{1}{{84}} + \frac{1}{{82}}} \right) = 300\left( {\frac{1}{{86}} + \frac{1}{{84}} + \frac{1}{{82}}} \right)\]

\[x = 300\]

Vậy \[x = 300\].

Lời giải

d) \[\left| {x + \frac{1}{{1.2.3}}} \right| + \left| {x + \frac{1}{{2.3.4}}} \right| + \left| {x + \frac{1}{{3.4.5}}} \right| + .... + \left| {x + \frac{1}{{18.19.20}}} \right| = 19x\]

Do \[\left| {x + \frac{1}{{1.2.3}}} \right| + \left| {x + \frac{1}{{2.3.4}}} \right| + \left| {x + \frac{1}{{3.4.5}}} \right| + .... + \left| {x + \frac{1}{{18.19.20}}} \right| \ge 0\] với mọi \[x\].

Do đó, \[19x \ge 0\], suy ra \[x \ge 0\].

Với mọi \[x \ge 0\], ta có:

\[x + \frac{1}{{1.2.3}} + x + \frac{1}{{2.3.4}} + x + \frac{1}{{3.4.5}} + .... + x + \frac{1}{{18.19.20}} = 19x\]

\[x + \frac{1}{{1.2.3}} + x + \frac{1}{{2.3.4}} + x + \frac{1}{{3.4.5}} + .... + x + \frac{1}{{18.19.20}} = 19x\]

\[18x + \left( {\frac{1}{{1.2.3}} + \frac{1}{{2.3.4}} + \frac{1}{{3.4.5}} + .... + \frac{1}{{18.19.20}}} \right) = 19x\]

\[x = \frac{1}{{1.2.3}} + \frac{1}{{2.3.4}} + \frac{1}{{3.4.5}} + .... + \frac{1}{{18.19.20}}\]

\[x = \frac{1}{2}\left( {\frac{1}{{1.2}} - \frac{1}{{2.3}} + \frac{1}{{2.3}} - \frac{1}{{3.4}} + \frac{1}{{3.4}} - \frac{1}{{4.5}}.... + \frac{1}{{18.19}} - \frac{1}{{19.20}}} \right)\]

\[x = \frac{1}{2}\left( {\frac{1}{{1.2}} - \frac{1}{{19.20}}} \right)\]

\[x = \frac{1}{2}\left( {\frac{1}{2} - \frac{1}{{380}}} \right)\]

\[x = \frac{1}{2}\left( {\frac{1}{2} - \frac{1}{{380}}} \right)\]

\[x = \frac{{189}}{{760}}\] (thỏa mãn)

Vậy \[x = \frac{{189}}{{760}}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP