Cho tam giác ABC có AB = 5, AC = 8 và \(\widehat {BAC} = 60^\circ \). Khi đó, bán kính đường tròn nội tiếp tam giác ABC bằng
Quảng cáo
Trả lời:
Theo định lí côsin ta có \(BC = \sqrt {A{B^2} + A{C^2} - 2AB.AC.\cos BAC} = \sqrt {25 + 64 - 2.5.8.\cos 60^\circ } = 7\).
Có \({S_{\Delta ABC}} = \frac{1}{2}.AB.AC.\sin \widehat {BAC} = \frac{1}{2}.5.8.\sin 60^\circ = 10\sqrt 3 \).
Có \(p = \frac{{5 + 8 + 7}}{2} = 10\).
Vì \(S = p.r \Rightarrow r = \frac{S}{p} = \frac{{10\sqrt 3 }}{{10}} = \sqrt 3 \). Chọn C.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Áp dụng định lí côsin ta có: \({b^2} = {a^2} + {c^2} - 2ac\cos \widehat B = 64 + 9 - 2.8.3.\cos 60^\circ = 49\).
Suy ra \(b = 7\). Chọn D.
Câu 2
Lời giải
Theo định lí sin ta có: \(\frac{{AB}}{{\sin C}} = \frac{{AC}}{{\sin B}} \Rightarrow \frac{{AB}}{{AC}} = \frac{{\sin C}}{{\sin B}} = \frac{{\sin 60^\circ }}{{\sin 45^\circ }} = \frac{{\sqrt 6 }}{2}\). Chọn A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(S = p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.