Phần II. Câu trắc nghiệm đúng sai. Trong mỗi ý a), b), c), d) ở mỗi câu, chọn đúng hoặc sai.
Cho tam giác \(ABC\) có \(AB = 3;AC = 2;\widehat A = 60^\circ \). Trên cạnh BC lấy điểm M nằm giữa B và C.
a) \(B{C^2} = A{B^2} + A{C^2} + 2AB.AC.\cos A\).
b) \(BC = \sqrt 7 \).
c) \(\cos B = \frac{{\sqrt 7 }}{7}\).
d) Độ dài AM nhỏ nhất bằng \(\frac{{189}}{{49}}\).
Phần II. Câu trắc nghiệm đúng sai. Trong mỗi ý a), b), c), d) ở mỗi câu, chọn đúng hoặc sai.
Cho tam giác \(ABC\) có \(AB = 3;AC = 2;\widehat A = 60^\circ \). Trên cạnh BC lấy điểm M nằm giữa B và C.
a) \(B{C^2} = A{B^2} + A{C^2} + 2AB.AC.\cos A\).
b) \(BC = \sqrt 7 \).
c) \(\cos B = \frac{{\sqrt 7 }}{7}\).
d) Độ dài AM nhỏ nhất bằng \(\frac{{189}}{{49}}\).
Quảng cáo
Trả lời:

a) \(B{C^2} = A{B^2} + A{C^2} - 2AB.AC.\cos A\).
b) \(B{C^2} = A{B^2} + A{C^2} - 2AB.AC.\cos A\)\( = 9 + 4 - 2.3.2\cos 60^\circ = 7 \Rightarrow BC = \sqrt 7 \).
c) Có \(\cos B = \frac{{A{B^2} + B{C^2} - A{C^2}}}{{2.AB.BC}} = \frac{{9 + 7 - 4}}{{2.3.\sqrt 7 }} = \frac{{2\sqrt 7 }}{7}\).
d) Với M tùy ý nằm giữa B và C, ta có:
\(A{M^2} = A{B^2} + B{M^2} - 2.AB.BM.\cos B = 9 + B{M^2} - 2.3.BM.\frac{{2\sqrt 7 }}{7}\)
\( = B{M^2} - \frac{{12\sqrt 7 }}{7}.BM + 9\)\( = {\left( {BM - \frac{{6\sqrt 7 }}{7}} \right)^2} + \frac{{189}}{{49}} \ge \frac{{189}}{{49}}\).
Suy ra \(A{M^2} \ge \frac{{189}}{{49}}\) \( \Rightarrow AM \ge \frac{{\sqrt {189} }}{7}\).
Dấu bằng xảy ra khi \(BM - \frac{{6\sqrt 7 }}{7} = 0\)\( \Leftrightarrow BM = \frac{{6\sqrt 7 }}{7}\) hay \(BM = \frac{6}{7}BC\).
Đáp án: a) Sai; b) Đúng; c) Sai; d) Sai.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Áp dụng định lí côsin ta có: \({b^2} = {a^2} + {c^2} - 2ac\cos \widehat B = 64 + 9 - 2.8.3.\cos 60^\circ = 49\).
Suy ra \(b = 7\). Chọn D.
Câu 2
Lời giải
Có \(B{M^2} = \frac{{A{B^2} + B{C^2}}}{2} - \frac{{A{C^2}}}{4}\)\( \Rightarrow A{C^2} = 2\left( {A{B^2} + B{C^2}} \right) - 4B{M^2} = 2\left( {9 + 25} \right) - 4.13 = 16 \Rightarrow AC = 4\).
Có \(p = \frac{{3 + 4 + 5}}{2} = 6\).
\(S = \sqrt {6.\left( {6 - 3} \right).\left( {6 - 4} \right).\left( {6 - 5} \right)} = 6.r\)\( \Leftrightarrow r = \frac{6}{6} = 1\). Chọn C.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \(S = p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.