Câu hỏi:

23/09/2025 25 Lưu

Cho tam giác ABC có a = 8; b = 6; c = 5.

a) Chu vi của tam giác ABC là 19.

b) \(\cos A = - \frac{1}{{20}}\).

c) Diện tích tam giác ABC là \(S = 14,98\) (kết quả làm tròn đến hàng phần trăm).

d) Bán kính đường tròn ngoại tiếp tam giác ABC là \(R = \frac{{320}}{{\sqrt {399} }}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Chu vi của tam giác ABC là 8 + 6 + 5 = 19.

b) Có \(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2.b.c}} = \frac{{{6^2} + {5^2} - {8^2}}}{{2.6.5}} = - \frac{1}{{20}}\).

c) Có \(S = \sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)} = \sqrt {\frac{{19}}{2}\left( {\frac{{19}}{2} - 8} \right)\left( {\frac{{19}}{2} - 6} \right)\left( {\frac{{19}}{2} - 5} \right)} = \frac{{3\sqrt {399} }}{4} \approx 14,98\).

d) Có \(R = \frac{{abc}}{{4S}} = \frac{{8.6.5}}{{4.\frac{{3\sqrt {399} }}{4}}} = \frac{{80}}{{\sqrt {399} }}\).

Đáp án: a) Đúng;   b) Đúng;   c) Đúng;   d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) \(B{C^2} = A{B^2} + A{C^2} - 2AB.AC.\cos A\).

b) \(B{C^2} = A{B^2} + A{C^2} - 2AB.AC.\cos A\)\( = 9 + 4 - 2.3.2\cos 60^\circ = 7 \Rightarrow BC = \sqrt 7 \).

c) Có \(\cos B = \frac{{A{B^2} + B{C^2} - A{C^2}}}{{2.AB.BC}} = \frac{{9 + 7 - 4}}{{2.3.\sqrt 7 }} = \frac{{2\sqrt 7 }}{7}\).

d) Với M tùy ý nằm giữa B và C, ta có:

\(A{M^2} = A{B^2} + B{M^2} - 2.AB.BM.\cos B = 9 + B{M^2} - 2.3.BM.\frac{{2\sqrt 7 }}{7}\)

\( = B{M^2} - \frac{{12\sqrt 7 }}{7}.BM + 9\)\( = {\left( {BM - \frac{{6\sqrt 7 }}{7}} \right)^2} + \frac{{189}}{{49}} \ge \frac{{189}}{{49}}\).

Suy ra \(A{M^2} \ge \frac{{189}}{{49}}\) \( \Rightarrow AM \ge \frac{{\sqrt {189} }}{7}\).

Dấu bằng xảy ra khi \(BM - \frac{{6\sqrt 7 }}{7} = 0\)\( \Leftrightarrow BM = \frac{{6\sqrt 7 }}{7}\) hay \(BM = \frac{6}{7}BC\).

Đáp án: a) Sai;  b) Đúng;   c) Sai;   d) Sai.

Câu 2

A. \(49\).                                 
B. \(\sqrt {{\rm{97}}} \).        
C. \(\sqrt {61} \).                                                                                   
D. \(7\).

Lời giải

Áp dụng định lí côsin ta có: \({b^2} = {a^2} + {c^2} - 2ac\cos \widehat B = 64 + 9 - 2.8.3.\cos 60^\circ = 49\).

Suy ra \(b = 7\). Chọn D.

Câu 3

A. \(2\).                                   
B. \(\frac{1}{2}\).                  
C. \(1\).                                       
D. \(\sqrt 2 \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\widehat A = 45^\circ .\)                                            
B. \(\widehat A = 30^\circ .\)                          
C. \(\widehat A = 60^\circ .\)                                            
D. \(\widehat A = 135^\circ \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(S = p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)\). 

B. \(S = 2bc\sin A\).
C. \(S = pr\).                                                                         
D. \(S = \frac{{abc}}{{4r}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\frac{{\sqrt 6 }}{2}\).     
B. \(\frac{{\sqrt 6 }}{3}\).     
C. \(\sqrt 6 \).                                            
D. \(\frac{6}{5}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP