Câu hỏi:

24/09/2025 16 Lưu

Cho tam giác đều \[ABC\] cạnh \[a\]. Khi đó \[\left| {\overrightarrow {AB} + \overrightarrow {AC} } \right| = \]

A. \[a\sqrt 3 \].                        
B. \[\frac{{a\sqrt 3 }}{2}\].  
C. \[2a\].            
D. \[a\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Cho tam giác đều \[ABC\] cạnh \[a\]. Khi đó \[\left| {\overrightarrow {AB}  + \overrightarrow {AC} } \right| = \] A. \[a\sqrt 3 \].		B. \[\frac{{a\sqrt 3 }}{2}\].	C. \[2a\].	D. \[a\]. (ảnh 1)

Dựng hình bình hành \(ABCD\) gọi \(M\) là trung điểm của \(BC\).

Ta có\[\left| {\overrightarrow {AB} + \overrightarrow {AC} } \right| = \left| {\overrightarrow {AD} } \right| = AD = 2AM = a\sqrt 3 \]. Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình vuông ABCD cạnh 2, M là trung điểm BC. Tính \(\left| {\overrightarrow {AB}  + \overrightarrow {BM} } \right|\) (kết quả làm tròn đến hàng đơn vị). (ảnh 1)

Ta có \(\left| {\overrightarrow {AB} + \overrightarrow {BM} } \right| = \left| {\overrightarrow {AM} } \right| = AM.\)

Theo định lý pytago: \(A{M^2} = A{B^2} + B{M^2} = {2^2} + {1^2} = 5 \Rightarrow AM = \sqrt 5 \approx 2\).

Trả lời: 2.

Lời giải

a) O là giao điểm hai đường chéo nên O là trung điểm của AC, BD.

b) Có \(\left| {\overrightarrow {OA} - \overrightarrow {CB} } \right| = \left| {\overrightarrow {CO} - \overrightarrow {CB} } \right| = \left| {\overrightarrow {BO} } \right| = BO = \frac{{a\sqrt 2 }}{2}\).

c) \(\left| {\overrightarrow {AB} + \overrightarrow {DC} } \right| = \left| {\overrightarrow {AB} + \overrightarrow {AB} } \right| = 2\left| {\overrightarrow {AB} } \right| = 2a\).

d) \(\left| {\overrightarrow {CD} - \overrightarrow {DA} } \right| = \left| {\overrightarrow {CD} - \overrightarrow {CB} } \right| = \left| {\overrightarrow {BD} } \right| = BD = a\sqrt 2 \).

Đáp án: a) Đúng;   b) Sai;   c) Sai;  d) Sai.

Câu 4

Phần II. Câu trắc nghiệm đúng sai. Trong mỗi ý a), b), c), d) ở mỗi câu, chọn đúng hoặc sai.

Cho hình thoi ABCD với cạnh có độ dài bằng 5 và \(\widehat {ABC} = 120^\circ \). Gọi O là giao điểm của AC và BD. Khi đó:

a) \(\overrightarrow {BO} \)\(\overrightarrow {DO} \) là hai vectơ đối nhau.

b) \(\overrightarrow {OA} - \overrightarrow {OB} = \overrightarrow {OC} - \overrightarrow {OD} \).

c) Với M là điểm bất kì, ta có \(\overrightarrow {MA} + \overrightarrow {MB} = \overrightarrow {MC} + \overrightarrow {MD} \).

d) \(\left| {\overrightarrow {AB} + \overrightarrow {AD} } \right| = 5\sqrt 3 \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[a\].                            
B. \[3a\].                          
C. \[a\sqrt 2 \].                                     
D. \[2a\sqrt 2 \].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP