Câu hỏi:

27/09/2025 28 Lưu

Một chất điểm \(A\) nằm trên mặt phẳng nằm ngang \(\left( \alpha  \right)\), chịu tác động bởi ba lực \(\overrightarrow {{F_1}} ,\,\overrightarrow {\,{F_2}} ,\,\,\overrightarrow {{F_3}} \). Các lực \(\overrightarrow {{F_1}} ,\,\,\overrightarrow {{F_2}} \) có giá nằm trong \(\left( \alpha  \right)\) và \(\left( {\overrightarrow {{F_1}} ,\,\,\overrightarrow {{F_2}} } \right) = 135^\circ \), còn lực \(\overrightarrow {{F_3}} \) có giá vuông góc với \(\left( \alpha  \right)\) và hướng lên trên. Xác định cường độ hợp lực của các lực \(\overrightarrow {{F_1}} ,\,\overrightarrow {\,{F_2}} ,\,\,\overrightarrow {{F_3}} \) biết rằng độ lớn của ba lực đó lần lượt là \(20\)N, \(15\)N và \(10\)N.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Xác định cường độ hợp lực của các lực \(\overrightarrow {{F_1}} ,\,\overrightarrow {\,{F_2}} ,\,\,\overrightarrow {{F_3}} \) biết rằng độ lớn của ba lực đó lần lượt là \(20\)N, \(15\)N và \(10\)N. (ảnh 1)

Gọi \(\overrightarrow F \) là hợp lực của các lực \(\overrightarrow {{F_1}} ,\,\overrightarrow {\,{F_2}} ,\,\,\overrightarrow {{F_3}} \) tức là \[\overrightarrow F  = \overrightarrow {{F_1}}  + \overrightarrow {{F_2}}  + \overrightarrow {{F_3}} \] ta có:

\({\left| {\overrightarrow F } \right|^2} = {\left( {\overrightarrow {{F_1}}  + \overrightarrow {{F_2}}  + \overrightarrow {{F_3}} } \right)^2} = \overrightarrow {{F_1}^2}  + \overrightarrow {{F_2}^2}  + \overrightarrow {{F_3}^2}  + 2.\overrightarrow {{F_1}} .\overrightarrow {{F_2}}  + 2.\overrightarrow {{F_2}} .\overrightarrow {{F_3}}  + 2.\overrightarrow {{F_3}} .\overrightarrow {{F_{1`}}} \)

\( = {20^2} + {15^2} + {10^2} + 2.20.25.{\rm{cos135}}^\circ \, = 725 - 300\sqrt 2 \).

Vậy \(\left| {\overrightarrow F } \right| = \sqrt {725 - 300\sqrt 2 }  \approx 17,34\)N.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn B

\({\left( {3\overrightarrow a  + 5\overrightarrow b } \right)^2} = 9{\overrightarrow a ^2} + 30\overrightarrow a \overrightarrow b  + 25{\overrightarrow b ^2}\) \( = 9 + 90 + 25 = 124\)\( \Rightarrow \left| {3\overrightarrow a  + 5\overrightarrow b } \right| = \sqrt {124} \).

Lời giải

a) Đúng. Theo công thức vì \[G\] là trọng tâm tứ diện \[ABCD \Rightarrow \overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  + \overrightarrow {GD}  = \overrightarrow 0 \].

b) Đúng. Ta có:

\[\overrightarrow {OG}  = \frac{1}{4}\left( {\overrightarrow {OG}  + \overrightarrow {OG}  + \overrightarrow {OG}  + \overrightarrow {OG} } \right) = \frac{1}{4}\left( {\overrightarrow {OA}  + \overrightarrow {AG}  + \overrightarrow {OB}  + \overrightarrow {BG}  + \overrightarrow {OC}  + \overrightarrow {CG}  + \overrightarrow {OD}  + \overrightarrow {DG} } \right)\]\[ = \frac{1}{4}\left( {\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  + \overrightarrow {OD} } \right)\].

c) Đúng. \[\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  + \overrightarrow {GD}  = \overrightarrow 0  \Leftrightarrow \overrightarrow {GA}  + \overrightarrow {GC}  + \overrightarrow {GD}  =  - \overrightarrow {GB}  = \overrightarrow {BG} \].

d) Sai. \[\overrightarrow {AG}  = \overrightarrow {AO}  + \overrightarrow {OG}  = \overrightarrow {AO}  + \frac{1}{4}\left( {\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  + \overrightarrow {OD} } \right) = \overrightarrow {AO}  + \frac{1}{4}\left( {4\overrightarrow {OA}  + \overrightarrow {AB}  + \overrightarrow {AC}  + \overrightarrow {AD} } \right)\]

\[ = \overrightarrow {AO}  + \overrightarrow {OA}  + \frac{1}{4}\left( {\overrightarrow {AB}  + \overrightarrow {AC}  + \overrightarrow {AD} } \right) = \frac{1}{4}\left( {\overrightarrow {AB}  + \overrightarrow {AC}  + \overrightarrow {AD} } \right)\].