Nếu anh Nam nhận được lời mời làm việc cho một công ty nước ngoài với mức lương khởi điểm là 35000 đô la mỗi năm và được tăng thêm 1400 đô la lương mỗi năm, thì sẽ mất bao nhiêu năm làm việc để tổng lương mà anh Nam nhận được là 319200 đô la?
Nếu anh Nam nhận được lời mời làm việc cho một công ty nước ngoài với mức lương khởi điểm là 35000 đô la mỗi năm và được tăng thêm 1400 đô la lương mỗi năm, thì sẽ mất bao nhiêu năm làm việc để tổng lương mà anh Nam nhận được là 319200 đô la?
Câu hỏi trong đề: Đề kiểm tra Cấp số cộng (có lời giải) !!
Quảng cáo
Trả lời:
Áp dụng công thức tính tổng \(n\) số hạng đầu của cấp số cộng với
\(\begin{array}{l}{S_n} = 319200,{u_1} = 35000,d = 1400,\\319200 = {S_n} = \frac{n}{2}[2 \cdot 35000 + (n - 1) \cdot 1400].\end{array}\)
Suy ra \(n = 8\).
Vậy sau 8 năm làm việc thì tổng lương mà anh Nam nhận được là 319200 đô la.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
|
a) Đúng |
b) Sai |
c) Đúng |
d) Đúng |
Áp dụng công thức số hạng tổng quát của cấp số cộng: \({u_n} = {u_1} + (n - 1)d\).
Khi đó: \(\left\{ {\begin{array}{*{20}{l}}{{u_1} - {u_3} + {u_5} = 15}\\{{u_1} + {u_6} = 27}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{u_1} - \left( {{u_1} + 2d} \right) + \left( {{u_1} + 4d} \right) = 15}\\{{u_1} + \left( {{u_1} + 4d} \right) = 27}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{u_1} + 2d = 15}\\{2{u_1} + 5d = 27}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{u_1} = 21}\\{d = - 3}\end{array}} \right.} \right.} \right.} \right.\).
Suy ra \({u_n} = {u_1} + (n - 1)d = 21 + (n - 1).( - 3) = - 3n + 24\)
Vậy \({u_{11}} = - 9\)
Ta có \( - 6048 = - 3n + 24 \Rightarrow n = 2024\)
Câu 2
Lời giải
Chọn C
Ta có \({u_{n + 1}} = 1 - 2n\), Ta có \({u_{n + 1}} - {u_n} = - 2,\,\forall n \in {\mathbb{N}^*}\), suy ra \(\left( {{u_n}} \right)\) là cấp số cộng có \({u_1} = 1\) và công sai \(d = - 2\). Vậy \({S_{60}} = \frac{{60}}{2}\left( {2{u_1} + 59d} \right) = - 3840\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Phần 2. Trắc nghiệm lựa chọn đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Cho cấp số cộng \(\left( {{u_n}} \right)\), biết rằng: \({u_1} = - 3,{u_6} = 27\), khi đó:
a) Công sai của cấp số cộng bằng \(7\)
b) Số hạng \({u_{85}} = 501\)
c) Số hạng \({u_{10}} = 52\)
d) Tổng của 85 số hạng đầu \({S_{85}} = 21165\)
Phần 2. Trắc nghiệm lựa chọn đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Cho cấp số cộng \(\left( {{u_n}} \right)\), biết rằng: \({u_1} = - 3,{u_6} = 27\), khi đó:
a) Công sai của cấp số cộng bằng \(7\)
b) Số hạng \({u_{85}} = 501\)
c) Số hạng \({u_{10}} = 52\)
d) Tổng của 85 số hạng đầu \({S_{85}} = 21165\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.