Phần 2. Trắc nghiệm lựa chọn đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Cho cấp số nhân \(({u_n})\) thỏa: \(\left\{ \begin{array}{l}{u_4} = \frac{2}{{27}}\\{u_3} = 243{u_8}\end{array} \right.\).
a) Số hạng thứ 3 của dãy là \(\frac{2}{9}\)
b) Số hạng thứ 5 của dãy là \(\frac{2}{{81}}\)
c) Tổng 10 số hạng đầu của cấp số là \(\frac{{59048}}{{19683}}\)
d) Số \(\frac{2}{{6561}}\) là số hạng thứ 8 của cấp số
Phần 2. Trắc nghiệm lựa chọn đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Cho cấp số nhân \(({u_n})\) thỏa: \(\left\{ \begin{array}{l}{u_4} = \frac{2}{{27}}\\{u_3} = 243{u_8}\end{array} \right.\).
a) Số hạng thứ 3 của dãy là \(\frac{2}{9}\)
b) Số hạng thứ 5 của dãy là \(\frac{2}{{81}}\)
c) Tổng 10 số hạng đầu của cấp số là \(\frac{{59048}}{{19683}}\)
d) Số \(\frac{2}{{6561}}\) là số hạng thứ 8 của cấp số
Câu hỏi trong đề: Đề kiểm tra Bài tập cuối chương II (có lời giải) !!
Quảng cáo
Trả lời:
|
a) Đúng |
b) Đúng |
c) Đúng |
d) Sai |
Gọi \(q\) là công bội của cấp số. Theo giả thiết ta có:
\(\left\{ \begin{array}{l}{u_1}{q^3} = \frac{2}{{27}}\\{u_1}{q^2} = 243.{u_1}{q^7}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}{q^3} = \frac{2}{{27}}\\{q^5} = \frac{1}{{243}}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}q = \frac{1}{3}\\{u_1} = 2\end{array} \right.\)
a) b) Năm số hạng đầu của cấp số là:
\({u_1} = 2,{u_2} = \frac{2}{3},{u_3} = \frac{2}{9};{u_4} = \frac{2}{{27}},{u_5} = \frac{2}{{81}}\).
c) Tổng 10 số hạng đầu của cấp số
\({S_{10}} = {u_1}\frac{{{q^{10}} - 1}}{{q - 1}} = 2.\frac{{{{\left( {\frac{1}{3}} \right)}^{10}} - 1}}{{\frac{1}{3} - 1}} = 3\left[ {1 - {{\left( {\frac{1}{3}} \right)}^{10}}} \right] = \frac{{59048}}{{19683}}\).
d) Ta có: \({u_n} = \frac{2}{{{3^{n - 1}}}} \Rightarrow {u_n} = \frac{2}{{6561}} \Leftrightarrow {3^{n - 1}} = 6561 = {3^8} \Rightarrow n = 9\)
Vậy \(\frac{2}{{6561}}\) là số hạng thứ 9 của cấp số.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
|
a) Đúng |
b) Đúng |
c) Sai |
d) Đúng |
Ta có năm số hạng đầu của dãy
\({u_1} = \frac{{{1^2} + 3.1 + 7}}{{1 + 1}} = \frac{{11}}{2}\), \({u_2} = \frac{{17}}{3},{u_3} = \frac{{25}}{4},{u_4} = 7,{u_5} = \frac{{47}}{6}\)
Ta có: \({u_n} = n + 2 + \frac{5}{{n + 1}}\), do đó \({u_n}\) nguyên khi và chỉ khi \(\frac{5}{{n + 1}}\) nguyên hay \(n + 1\) là ước của 5.
Điều đó xảy ra khi \(n + 1 = 5 \Leftrightarrow n = 4\)
Vậy dãy số có duy nhất một số hạng nguyên là \({u_4} = 7\)
Lời giải
|
a) Sai |
b) Sai |
c) Đúng |
d) Đúng |
Theo công thức truy hồi của dãy số \(\left( {{u_n}} \right)\) ta có \({u_{n + 1}} - {u_n} = 3n - 2\).
Đặt \({v_n} = {u_{n + 1}} - {u_n}\)\( \Rightarrow {v_n} = 3n - 2\).
Ta có \({v_{n + 1}} - {v_n}\)\( = \left[ {3\left( {n + 1} \right) - 2} \right] - \left( {3n - 2} \right)\)\( = 3\),\(\forall n \in {\mathbb{N}^*}\) nên \(\left( {{v_n}} \right)\) là một cấp số cộng có số hạng đầu \({v_1} = 3.1 - 2 = 1\) và công sai \(d = 3\).
Ta lại có: \({u_n} = \left( {{u_n} - {u_{n - 1}}} \right) + \left( {{u_{n - 1}} - {u_{n - 2}}} \right) + ... + \left( {{u_2} - {u_1}} \right) + {u_1}\)\( = {v_{n - 1}} + {v_{n - 2}} + ... + {v_1} + 2\).
Mà \({v_{n - 1}} + {v_{n - 2}} + ... + {v_1} = {S_{n - 1}}\)\( = \frac{{n - 1}}{2}\left[ {2{v_1} + \left( {n - 2} \right)d} \right]\)\( = \frac{{\left[ {2 + 3\left( {n - 2} \right)} \right]\left( {n - 1} \right)}}{2}\)\( = \frac{{\left( {n - 1} \right)\left( {3n - 4} \right)}}{2}\)
Vậy \({u_n} = \frac{{\left( {n - 1} \right)\left( {3n - 4} \right)}}{2} + 2\)\( \Rightarrow {u_{101}} = \frac{{100.299}}{2} + 2 = 14952\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.