Câu hỏi:

06/10/2025 20 Lưu

Phần 2. Trắc nghiệm lựa chọn đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Biết giới hạn \(\lim \left( { - 2{n^3} - 5n + 9} \right) = a\)\(\lim \frac{{{4^n} + 3}}{{1 + 3 \cdot {4^{n + 1}}}} = b\). Khi đó:

a) Tích \(a.b = 3\)

b) Hàm số \(y = \sqrt {1 - x} \) có tập xác định là \(D\left( {a;1} \right]\)

c) Giá trị \(b\) là số lớn hơn \(0\)

d) Phương trình lượng giác \(\cos x = b\) vô nghiệm

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Sai

b) Đúng

c) Đúng

d) Sai

 

Ta có: \(\lim \left( { - 2{n^3} - 5n + 9} \right) = \lim {n^3}\left( { - 2 - \frac{5}{{{n^2}}} + \frac{9}{{{n^3}}}} \right) = - \infty \),

do \(\left\{ {\begin{array}{*{20}{l}}{\lim {n^3} = + \infty }\\{\lim \left( { - 2 - \frac{5}{{{n^2}}} + \frac{9}{{{n^3}}}} \right) = - 2}\end{array}} \right.\)

\(\lim \frac{{{4^n} + 3}}{{1 + 3 \cdot {4^{n + 1}}}} = \lim \frac{{{4^n} + 3}}{{1 + 12 \cdot {4^n}}} = \lim \frac{{{4^n}\left( {1 + \frac{3}{{{4^n}}}} \right)}}{{{4^n}\left( {\frac{1}{{{4^n}}} + 12} \right)}} = \lim \frac{{1 + \frac{3}{{{4^n}}}}}{{\frac{1}{{{4^n}}} + 12}} = \frac{1}{{12}}\)

a) Tích \(a.b = - \infty \)

b) Hàm số \(y = \sqrt {1 - x} \) có tập xác định là \(D\left( { - \infty ;1} \right]\)

c) Giá trị \[\frac{1}{{12}}\] là số lớn hơn \(0\)

d) Phương trình lượng giác \(\cos x = \frac{1}{{12}}\) có nghiệm

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng

b) Đúng

c) Sai

d) Đúng

 

a) Đây là tổng của cấp số nhân lùi vô hạn có số hạng đầu \({u_1} = 1\), công bội

\(q = - \frac{1}{2}.\)\({\rm{ }} \Rightarrow S = 1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \ldots + {\left( { - \frac{1}{2}} \right)^n} + \ldots = \frac{1}{{1 + \frac{1}{2}}} = \frac{2}{3}{\rm{. }}\)

b) Đây là tổng của cấp số nhân lùi vô hạn có số hạng đầu \({u_1} = 1\), công bội

\(q = \frac{1}{3}{\rm{. }}\)

Vì vậy \(T = 1 + \frac{1}{3} + \frac{1}{{{3^2}}} + \ldots + \frac{1}{{{3^n}}} + \ldots = \frac{1}{{1 - \frac{1}{3}}} = \frac{3}{2}{\rm{. }}\)

Lời giải

\(\mathop {\lim }\limits_{n \to + \infty } \left( {{n^2} - n + 3} \right) = \mathop {\lim }\limits_{n \to + \infty } {n^2}\left( {1 - \frac{1}{n} + \frac{3}{{{n^2}}}} \right) = + \infty \)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP