Câu hỏi:

06/10/2025 1,103 Lưu

Tìm được tổng của cấp số nhân lùi vô hạn sau: \(S = 1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \ldots \)\(T = 1 + \frac{1}{3} + \frac{1}{{{3^2}}} + \ldots + \frac{1}{{{3^n}}} + \ldots \)Khi đó:

a) \(1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \ldots \)là tổng của cấp số nhân lùi vô hạn có công bội \(q = - \frac{1}{2}.\)

b) \(1 + \frac{1}{3} + \frac{1}{{{3^2}}} + \ldots + \frac{1}{{{3^n}}} + \ldots \)là tổng của cấp số nhân lùi vô hạn có công bội \(q = \frac{1}{3}{\rm{. }}\)

a) \(S > T\)

b) \(S = \frac{1}{T}\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng

b) Đúng

c) Sai

d) Đúng

 

a) Đây là tổng của cấp số nhân lùi vô hạn có số hạng đầu \({u_1} = 1\), công bội

\(q = - \frac{1}{2}.\)\({\rm{ }} \Rightarrow S = 1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \ldots + {\left( { - \frac{1}{2}} \right)^n} + \ldots = \frac{1}{{1 + \frac{1}{2}}} = \frac{2}{3}{\rm{. }}\)

b) Đây là tổng của cấp số nhân lùi vô hạn có số hạng đầu \({u_1} = 1\), công bội

\(q = \frac{1}{3}{\rm{. }}\)

Vì vậy \(T = 1 + \frac{1}{3} + \frac{1}{{{3^2}}} + \ldots + \frac{1}{{{3^n}}} + \ldots = \frac{1}{{1 - \frac{1}{3}}} = \frac{3}{2}{\rm{. }}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(4\).                      
B. \(3\).                    
C. \(5\).                           
D. \(2\).

Lời giải

Chọn A

Ta có: \[\lim \left( {\frac{{3n + 2}}{{n + 2}} + {a^2} - 4a} \right)\]

\[ = \lim \left( {\frac{{\left( {{a^2} - 4a + 3} \right)n + 2 + 2{a^2} - 8a}}{{n + 2}}} \right)\]\[ = \lim \left( {\frac{{{a^2} - 4a + 3 + \frac{{2 + 2{a^2} - 8a}}{n}}}{{1 + \frac{2}{n}}}} \right) = {a^2} - 4a + 3\].

Theo giả thiết:\[\lim \left( {\frac{{3n + 2}}{{n + 2}} + {a^2} - 4a} \right) = 0 \Leftrightarrow {a^2} - 4a + 3 = 0 \Leftrightarrow a = 3 \vee a = 1\].

Vậy \[S = \left\{ {1;\,3} \right\} \Rightarrow 1 + 3 = 4\].

Câu 2

A. \(0 < a < 2\).         
B. \(0 < a < \frac{1}{2}\).            
C. \( - 1 < a < 0\).    
D. \(1 < a < 3\).

Lời giải

Chọn A

Ta có \(\lim \frac{{a{n^2} + {a^2}n + 1}}{{{{\left( {n + 1} \right)}^2}}} = \lim \frac{{a{n^2} + {a^2}n + 1}}{{{n^2} + 2n + 1}} = \lim \frac{{a + \frac{{{a^2}}}{n} + \frac{1}{{{n^2}}}}}{{1 + \frac{2}{n} + \frac{1}{{{n^2}}}}} = a\).

\({a^2} - a + 1 = a\)\( \Rightarrow {a^2} - 2a + 1 = 0\)\( \Rightarrow a = 1\).

Câu 4

A. \(192\)                   
B. \(68\)                   
C. \(32\)                          
D. \(128\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP