Câu hỏi:

06/10/2025 5 Lưu

Nếu hàm số \(y = f\left( x \right)\) liên tục, đơn điệu trên \(\left[ {a;\,b} \right]\)\(f\left( a \right).f\left( b \right) < 0\) thì phương trình \(f\left( x \right) = 0\) có nghiệm duy nhất.

A. Có đúng hai mệnh đề sai.                     
B. Cả ba mệnh đề đều đúng.
C. Cả ba mệnh đề đều sai.                         
D. Có đúng một mệnh đề sai.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn D

Khẳng định thứ nhất sai vì thiếu tính liên tục trên đoạn \(\left[ {a;\,b} \right]\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. Hàm số liên tục tại \(x = 2\).                 
B. Hàm số gián đoạn tại \(x = 2\).
C. \(f\left( 4 \right) = 2\).                                                             
D. \(\mathop {\lim }\limits_{x \to 2} f\left( x \right) = 2\).

Lời giải

Chọn A

Tập xác định: \(D = \mathbb{R}\)

\(\mathop {\lim }\limits_{x \to 2} f\left( x \right)\)\( = \mathop {\lim }\limits_{x \to 2} \frac{{x - 2}}{{\sqrt {x + 2}  - 2}}\)\( = \mathop {\lim }\limits_{x \to 2} \frac{{\left( {x - 2} \right)\left( {\sqrt {x + 2}  + 2} \right)}}{{x - 2}}\)\( = \mathop {\lim }\limits_{x \to 2} \left( {\sqrt {x + 2}  + 2} \right)\)\( = 4\)

\(f\left( 2 \right) = 4\)

\( \Rightarrow \mathop {\lim }\limits_{x \to 2} f\left( x \right) = f\left( 2 \right)\)

Vậy hàm số liên tục tại \(x = 2\).

Câu 2

A. \[y = \frac{{3x - 4}}{{x - 2}}\].           
B. \[y = \sin x\].                             
C. \[y = {x^4} - 2{x^2} + 1\]                              
D. \[y = \tan x\].

Lời giải

Chọn A

Ta có: \(y = \frac{{3x - 4}}{{x - 2}}\) có tập xác định: \(D = \mathbb{R}\backslash \left\{ 2 \right\}\), do đó gián đoạn tại \(x = 2\).

Câu 3

A. Nếu \(f(a).f(b) > 0\) thì phương trình \(f(x) = 0\) không có nghiệm nằm trong \(\left( {a;b} \right)\).
B. Nếu \(f(a).f(b) < 0\) thì phương trình \(f(x) = 0\) có ít nhất một nghiệm nằm trong \(\left( {a;b} \right)\).
C. Nếu \(f(a).f(b) > 0\) thì phương trình \(f(x) = 0\) có ít nhất một nghiệm nằm trong \(\left( {a;b} \right)\).
D. Nếu phương trình \(f(x) = 0\) có ít nhất một nghiệm nằm trong \(\left( {a;b} \right)\) thì \(f(a).f(b) < 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(y\) liên tục phải tại \(x = 1\).              
B. \(y\) liên tục tại \(x = 1\).
C. \(y\) liên tục trái tại \(x = 1\).                
D. \(y\) liên tục trên \(\mathbb{R}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. Hàm số liên tục nhưng không có đạo hàm tại \({x_0} = 3\).
B. Hàm số gián đoạn và không có đạo hàm tại \({x_0} = 3\).
C. Hàm số có đạo hàm nhưng không liên tục tại \({x_0} = 3\).
D. Hàm số liên tục và có đạo hàm tại \({x_0} = 3\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. Nếu hàm số \[f\left( x \right)\] liên tục trên \[\left[ {a;b} \right]\]\[f\left( a \right)f\left( b \right) > 0\] thì phương trình \[f\left( x \right) = 0\] không có nghiệm trong khoảng \[\left( {a;b} \right)\].
B. Nếu \[f\left( a \right)f\left( b \right) < 0\] thì phương trình \[f\left( x \right) = 0\] có ít nhất một nghiệm trong khoảng \[\left( {a;b} \right)\].
C. Nếu hàm số \[f\left( x \right)\] liên tục, tăng trên \[\left[ {a;b} \right]\]\[f\left( a \right)f\left( b \right) > 0\] thì phương trình \[f\left( x \right) = 0\] không có nghiệm trong khoảng \[\left( {a;b} \right)\].
D. Nếu phương trình \[f\left( x \right) = 0\]có nghiệm trong khoảng \[\left( {a;b} \right)\] thì hàm số \[f\left( x \right)\] phải liên tục trên \[\left( {a;b} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. Hàm số \(y = f\left( x \right)\) có đạo hàm tại điểm \(x = 0\) nhưng không liên tục tại điểm \(x = 0\).
B. Hàm số \(y = f\left( x \right)\)liên tục tại điểm \(x = 0\) nhưng không có đạo hàm tại điểm \(x = 0\).
C. Hàm số \(y = f\left( x \right)\) liên tục và có đạo hàm tại điểm \(x = 0\).
D. Hàm số \(y = f\left( x \right)\) không liên tục và không có đạo hàm tại điểm \(x = 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP