Bảng dưới biểu diễn mẫu số liệu ghép nhóm về số tiền (đơn vị: nghìn đồng) mà 60 khách hàng mua sách ở một cửa hàng trong một ngày.
Nhóm
Tần số
\(\left[ {40\,;\,50} \right)\)
3
\(\left[ {50\,;\,60} \right)\)
6
\(\left[ {60\,;\,70} \right)\)
19
\(\left[ {70\,;\,80} \right)\)
23
\(\left[ {80\,;\,90} \right)\)
9
\(n = 60\)
Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là:
|
Nhóm |
Tần số |
|
\(\left[ {40\,;\,50} \right)\) |
3 |
|
\(\left[ {50\,;\,60} \right)\) |
6 |
|
\(\left[ {60\,;\,70} \right)\) |
19 |
|
\(\left[ {70\,;\,80} \right)\) |
23 |
|
\(\left[ {80\,;\,90} \right)\) |
9 |
|
|
\(n = 60\) |
Quảng cáo
Trả lời:
Chọn C
Số phần tử của mẫu là \(n = 60\).
Tần số tích lũy của các nhóm lần lượt là \(c{f_1} = 3,c{f_2} = 9,c{f_3} = 28,c{f_4} = 51,c{f_5} = 60\).
Ta có: \(\frac{n}{4} = \frac{{60}}{4} = 15\) mà \(9 < 15 < 28\) suy ra nhóm 3 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 15. Xét nhóm 3 là nhóm \(\left[ {60\,;\,70} \right)\) có \(s = 60,\;h = 10,{n_3} = 19\) và nhóm 2 là nhóm \(\left[ {50\,;\,60} \right)\) có \(c{f_2} = 9\).
Ta có tứ phân vị thứ nhất là: \({Q_1} = s + \left( {\frac{{15 - c{f_2}}}{{{n_3}}}} \right) \cdot h = 60 + \left( {\frac{{15 - 9}}{{19}}} \right) \cdot 10 = \frac{{1200}}{{19}}\).
Ta có: \(\frac{{3n}}{4} = \frac{{3.60}}{4} = 45\) mà \(28 < 45 < 51\) suy ra nhóm 4 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bẳng 45. Xét nhóm 4 là nhóm \(\left[ {70\,;\,80} \right)\) có \(t = 70,l = 10,{n_4} = 23\) và nhóm 3 là nhóm \(\left[ {60\,;\,70} \right)\) có \(c{f_3} = 28\).
Ta có tứ phân vị thứ ba là: \({Q_3} = t + \left( {\frac{{45 - c{f_3}}}{{{n_4}}}} \right).l = 70 + \left( {\frac{{45 - 28}}{{23}}} \right).10 = \frac{{1780}}{{23}}\).
Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là: \({Q_3} - {Q_1} = \frac{{1780}}{{23}} - \frac{{1200}}{{19}} \approx 14,23\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đúng. Xét số liệu ở Hà Nội:
Khoảng biến thiên: \(R = 31,8 - 16,8 = 15\).
Số phần tử của mẫu là \(n = 12\).
Tần số tích lũy của các nhóm lần lượt là \(c{f_1} = 2,c{f_2} = 5,c{f_3} = 7,c{f_4} = 8,c{f_5} = 12\).
Ta có: \(\frac{n}{4} = \frac{{12}}{4} = 3\) mà \(2 < 3 < 5\) suy ra nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 3.
Xét nhóm 2 là nhóm \(\left[ {19,8;22,8} \right)\) có \(s = 19,8,h = 3,{n_2} = 3\) và nhóm 1 là nhóm \(\left[ {16,8;19,8} \right)\) có \(c{f_1} = 2\). Ta có tứ phân vị thứ nhất là: \({Q_1} = s + \left( {\frac{{3 - c{f_1}}}{{{n_2}}}} \right).h = 19,8 + \left( {\frac{{3 - 2}}{3}} \right).3 = 20,8\).
Ta có: \(\frac{{3n}}{4} = \frac{{3.12}}{4} = 9\) mà \(8 < 9 < 12\) suy ra nhóm 5 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 9.
Xét nhóm 5 là nhóm \(\left[ {28,8;31,8} \right)\) có \(t = 28,8,1 = 3,{n_5} = 4\) và nhóm 4 là nhóm \(\left[ {25,8;28,8} \right)\) có \(c{f_4} = 8\).
Ta có tứ phân vị thứ ba là: \({Q_3} = t + \left( {\frac{{9 - c{f_4}}}{{{n_5}}}} \right).l = 28,8 + \left( {\frac{{9 - 8}}{4}} \right).3 = 29,55\).
Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là: \({Q_3} - {Q_1} = 29,55 - 20,8 = 8,75\) .
b) Sai. Số trung bình cộng của mẫu số liệu ghép nhóm là:
\(\overline {{x_1}} = \frac{{2.18,3 + 3.21,3 + 2.24,3 + 27,3 + 4.30,3}}{{12}} = 24,8\).
Phương sai của mẫu số liệu ghép nhóm là:
\(\begin{array}{l}{s_1}^2 = \frac{1}{{12}}\left[ {2{{\left( {18,3 - 24,8} \right)}^2} + 3{{\left( {21,3 - 24,8} \right)}^2} + 2{{\left( {24,3 - 24,8} \right)}^2}} \right.\\\left. {\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + {{\left( {27,3 - 24,8} \right)}^2} + 4{{\left( {30,3 - 24,8} \right)}^2}} \right] = 20,75.\end{array}\)
Độ lệch chuẩn của mẫu số liệu ghép nhóm là: \({s_1} = \sqrt {{s_1}^2} = \sqrt {20,75} \approx 4,56\).
c) Sai. Xét số liệu ở Huế:
Khoảng biến thiên: \(R = 31,8 - 16,8 = 15\).
Số phần tử của mẫu là \(n = 12\).
Tần số tích lũy của các nhóm lần lượt là \(c{f_1} = 1,c{f_2} = 3,c{f_3} = 6,c{f_4} = 8,c{f_5} = 12\).
Ta có: \(\frac{n}{4} = \frac{{12}}{4} = 3\) suy ra nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 3. Xét nhóm 2 là nhóm \([19,8;22,8)\) có \(s = 19,8,\;h = 3,{n_2} = 2\) và nhóm 1 là nhóm \([16,8;19,8)\) có \(c{f_1} = 1\)
Ta có tứ phân vị thứ nhất là: \({Q_1} = s + \left( {\frac{{3 - c{f_1}}}{{{n_2}}}} \right).h = 19,8 + \left( {\frac{{3 - 1}}{2}} \right).3 = 22,8\).
Ta có: \(\frac{{3n}}{4} = \frac{{3.12}}{4} = 9\) mà \(8 < 9 < 12\) suy ra nhóm 5 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 9.
Xét nhóm 5 là nhóm \(\left[ {28,8;31,8} \right)\) có \(t = 28,8,l = 3,{n_5} = 4\) và nhóm 4 là nhóm \([25,8;28,8)\) có \(c{f_4} = 8\).
Ta có tứ phân vị thứ ba là: \({Q_3} = t + \left( {\frac{{9 - c{f_4}}}{{{n_5}}}} \right).l = 28,8 + \left( {\frac{{9 - 8}}{4}} \right).3 = 29,55\).
Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là: \({Q_3} - {Q_1} = 29,55 - 22,8 = 6,75\).
Số trung bình cộng của mẫu số liệu ghép nhóm là:
\(\overline {{x_2}} = \frac{{18,3 + 2.21,3 + 3.24,3 + 2.27,3 + 4.30,3}}{{12}} = 25,8\).
Phương sai của mẫu số liệu ghép nhóm là:
\[\begin{array}{l}s_2^2 = \frac{1}{{12}}\left[ {{{\left( {18,3 - 25,8} \right)}^2} + 3{{\left( {21,3 - 25,8} \right)}^2} + 3{{\left( {24,3 - 25,8} \right)}^2}} \right.\\\left. {\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + 2{{\left( {27,3 - 25,8} \right)}^2} + 4{{\left( {30,3 - 25,8} \right)}^2}} \right] = 15,75.\end{array}\]
d) Đúng. Độ lệch chuẩn của mẫu số liệu ghép nhóm là: \({s_2} = \sqrt {s_2^2} = \sqrt {15,75} \approx 3,97\).
Huế có nhiệt độ không khí trung bình tháng đồng đều hơn vì độ lệch chuẩn nhỏ hơn.
Lời giải
a) Cỡ mẫu \(n = 100\). Gọi \({x_1},\,{x_2},\,{x_3},\,...,\,{x_{100}}\) là mẫu số liệu gốc gồm \(100\) lần đi xe buýt của ông Thắng. Khi đó ta có:
\({x_1},\,....,\,{x_{22}} \in \left[ {15\,;\,18} \right)\); \({x_{23}},\,...\,,{x_{60}} \in \left[ {18\,;\,21} \right)\); \({x_{61}},\,...,\,{x_{87}} \in \left[ {21\,;\,24} \right)\);
\({x_{88}},\,....,\,{x_{95}} \in \left[ {21\,;\,27} \right)\); \({x_{96}},\,...\,,{x_{99}} \in \left[ {27\,;\,30} \right)\); \(\,{x_{100}} \in \left[ {30\,;\,33} \right)\).
Tứ phân vị thứ nhất của mẫu số liệu gốc là \(\frac{1}{2}\left( {{x_{75}} + {x_{76}}} \right) \in \left[ {18\,;\,21} \right)\).
Do đó tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \({Q_1} = 18 + \frac{{\frac{{100}}{4} - 22}}{{38}}\left( {21 - 18} \right) = \frac{{693}}{{38}}\).
Tứ phân vị thứ ba của mẫu số liệu gốc là \(\frac{1}{2}\left( {{x_{75}} + {x_{76}}} \right) \in \left[ {21;\,24} \right)\).
Do đó tứ phân vị thứ ba của mẫu số liệu ghép nhóm là:
\({Q_3} = 18 + \frac{{\frac{{3.100}}{4} - \left( {22 + 38} \right)}}{{27}}\left( {24 - 21} \right) = \frac{{68}}{3}\).
Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là \({\Delta _Q} = \frac{{68}}{3} - \frac{{693}}{{38}} = \frac{{505}}{{114}} \approx 4,43\).
b) Trong lần duy nhất ông Thắng đi hết \(32\) phút, thời gian đi của ông thuộc nhóm \(\left[ {30\,;\,33} \right)\).
Vì \({Q_3} + 1,5{\Delta _Q} \approx 29,31 < 30\) nên đây là giá trị ngoại lệ của mẫu số liệu ghép nhóm.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



