Bộ phận kiểm tra chất lượng sản phẩm dùng máy để đo (chính xác đến \(0,001\;{\rm{mm}}\)) độ dày của một chi tiết máy. Kết quả đo một số sản phẩm được thống kê trong bảng sau:

Nhận xét nào sau đây sai?

Quảng cáo
Trả lời:
Chọn A
Ta có cỡ mẫu \(n = 60\).
Số trung bình của mẫu số liệu là\[\bar x = \frac{{3.18,5 + 7.19,5 + 23.20,5 + 25.21,5 + 2.22,5}}{{60}} = \frac{{623}}{{30}} \approx 20,77.\]
Phương sai của mẫu số liệu là
\({S^2} = \frac{1}{{60}}\left( {3 \cdot 18,{5^2} + 7 \cdot 19,{5^2} + 23 \cdot 20,{5^2} + 25 \cdot 21,{5^2} + 2 \cdot 22,{5^2}} \right) - {\left( {\frac{{623}}{{30}}} \right)^2} = \frac{{179}}{{225}}\).
Độ lệch chuẩn của mẫu số liệu là \({S^2} = \sqrt {\frac{{179}}{{225}}} = \frac{{\sqrt {179} }}{{15}} \approx 0,89\).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn B
Trọng lượng trung bình của một củ khoai là: \(\overline x = \frac{{75.3 + 85.6 + 95.12 + 105.6 + 115.3}}{{30}} = 95\).
Phương sai là \({S^2} = \frac{{{{75}^2}.3 + {{85}^2}.6 + {{95}^2}.12 + {{105}^2}.6 + {{115}^2}.3}}{{30}} - {95^2} = 120\).
Độ lệch chuẩn là: \(S = \sqrt {{S^2}} = \sqrt {120} \approx 10,95\).
Lời giải
Cỡ mẫu \[n = 50\].
Gọi \[{x_1};\,\,{x_2};\,\,...;\,\,{x_{50}}\] là mẫu số liệu gốc gồm cân nặng của 50 quả xoài được xếp theo thứ tự không giảm.
Ta có: \[{x_1},\,\,{x_2},\,\,{x_3} \in \left[ {250;290} \right)\]; \[{x_4},\,\,...,\,\,{x_{16}} \in \left[ {290;330} \right)\]; \[{x_{17}},\,\,...,\,\,{x_{34}} \in \left[ {330;370} \right)\];
\[{x_{35}},\,\,...,\,\,{x_{45}} \in \left[ {370;410} \right)\]; \[{x_{46}},\,\,...,\,\,{x_{50}} \in \left[ {410;450} \right)\].
Tứ phân vị thứ nhất của mẫu số liệu gốc là \[{x_{13}} \in \left[ {290;330} \right)\]. Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \[{Q_1} = 290 + \frac{{\frac{{50}}{4} - 3}}{{13}}.\left( {330 - 290} \right) = \frac{{4150}}{{13}}\].
Tứ phân vị thứ ba của mẫu số liệu gốc là \[{x_{38}} \in \left[ {370;410} \right)\]. Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: \[{Q_3} = 370 + \frac{{\frac{{3.50}}{4} - \left( {3 + 13 + 18} \right)}}{{11}}.\left( {410 - 370} \right) = \frac{{4210}}{{11}}\].
Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \[{\Delta _Q} = \frac{{4210}}{{11}} - \frac{{4150}}{{13}} = \frac{{9080}}{{143}} \approx 63,5\].
Đáp án: 63,5.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.





