Câu hỏi:

07/10/2025 17 Lưu

Một vườn thú ghi lại tuổi thọ (đơn vị: năm) của 20 con hổ và thu được kết quả như sau:

Một vườn thú ghi lại tuổi thọ (đơn vị: năm) của 20 con hổ và thu được kết quả như sau: (ảnh 1)

a) Giá trị đại diện của nhóm \[\left[ {15;16} \right)\] là \[15,5\].

b) Số trung bình của mẫu số liệu trên là \[16,25\].

c) Phương sai của mẫu số liệu trên là \[0,9875\].

d) Độ lệch chuẩn của mẫu số liệu trên là \[\frac{{\sqrt {395} }}{{20}}\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng. Giá trị đại diện của nhóm \[\left[ {15;16} \right)\] là \[\frac{{15 + 16}}{2} = 15,5\]

b) Sai. Số trung bình của mẫu số liệu trên là

\[\overline x  = \frac{{14,5.1 + 15,5.3 + 16,5.8 + 17,5.6 + 18,5.2}}{{20}} = 16,75\]

c) Đúng. Phương sai của mẫu số liệu trên là

\[\begin{array}{l}{s^2} = \frac{1}{{20}}\left[ {1.{{\left( {14,5 - 16,75} \right)}^2} + 3.{{\left( {15,5 - 16,75} \right)}^2} + 8.{{\left( {16,5 - 16,75} \right)}^2}} \right.\\\left. {\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + 6.{{\left( {17,5 - 16,75} \right)}^2} + 2.{{\left( {18,5 - 16,75} \right)}^2}} \right] = 0,9875.\end{array}\]

d) Đúng. Độ lệch chuẩn của mẫu số liệu trên là \[s = \sqrt {{s^2}}  = \sqrt {0,9875}  = \frac{{\sqrt {395} }}{{20}}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Khoảng biến thiên của mẫu số liệu ghép nhóm này là 25. (ảnh 2)

a) Sai. Khoảng biến thiên của mẫu số liệu ghép nhóm là \(R = 30 - 0 = 30\).

b) Đúng. Vì \(16 < \frac{{3n}}{4} = \frac{{3.30}}{4} = \frac{{90}}{4} = 22,5 < 25\) nên nhóm chứa tứ phân vị thứ 3 là \(\left[ {15;20} \right)\)

c) Sai. Thời gian sử dụng điện thoại trung bình của học sinh là

\(\overline x  = \frac{{2.2,5 + 6.7,5 + 8.12,5 + 9.17,5 + 3.22,5 + 2.27,5}}{{30}} = \frac{{43}}{3} \approx 14,3\)

d) Sai. Ta có: \(\frac{n}{4} = 7,5\,\,;\,\,\frac{n}{2} = 15;\,\,\frac{{3n}}{4} = 22,5\).

\({Q_1} = 5 + \frac{{\frac{{30}}{4} - 2}}{6}.5 = 9,58;{Q_3} = 15 + \frac{{\frac{{90}}{4} - 16}}{9}.5 = \frac{{335}}{{18}} \approx 18,61 \Rightarrow {\Delta _Q} = {Q_3} - {Q_1} = \frac{{325}}{{36}} \approx 9,03 < 10\).

Lời giải

Cỡ mẫu \[n = 50\].

Gọi \[{x_1};\,\,{x_2};\,\,...;\,\,{x_{50}}\] là mẫu số liệu gốc gồm cân nặng của 50 quả xoài được xếp theo thứ tự không giảm.

Ta có: \[{x_1},\,\,{x_2},\,\,{x_3} \in \left[ {250;290} \right)\]; \[{x_4},\,\,...,\,\,{x_{16}} \in \left[ {290;330} \right)\]; \[{x_{17}},\,\,...,\,\,{x_{34}} \in \left[ {330;370} \right)\];

\[{x_{35}},\,\,...,\,\,{x_{45}} \in \left[ {370;410} \right)\]; \[{x_{46}},\,\,...,\,\,{x_{50}} \in \left[ {410;450} \right)\].

Tứ phân vị thứ nhất của mẫu số liệu gốc là \[{x_{13}} \in \left[ {290;330} \right)\]. Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \[{Q_1} = 290 + \frac{{\frac{{50}}{4} - 3}}{{13}}.\left( {330 - 290} \right) = \frac{{4150}}{{13}}\].

Tứ phân vị thứ ba của mẫu số liệu gốc là \[{x_{38}} \in \left[ {370;410} \right)\]. Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: \[{Q_3} = 370 + \frac{{\frac{{3.50}}{4} - \left( {3 + 13 + 18} \right)}}{{11}}.\left( {410 - 370} \right) = \frac{{4210}}{{11}}\].

Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \[{\Delta _Q} = \frac{{4210}}{{11}} - \frac{{4150}}{{13}} = \frac{{9080}}{{143}} \approx 63,5\].

Đáp án: 63,5.

Câu 4

A. 23,75.                         
B. 27,5.                         
C. 31,88.                              
D. 8,125.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \([2;3,5)\).                  
B. \([3,5;5)\).                
C. \([5;6,5)\).                       
D. \([6,5;8)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP