Lúc 6 giờ sáng. Một xe tải và một xe máy cùng xuất phát từ A đến B. Vận tốc xe tải là 50km/h; vận tốc xe máy là 30 km/h. Lúc 8 giờ sáng, một xe con cũng đi từ A đến B với vận tốc 60 km/h. Giả thiết rằng có một xe máy thứ hai cũng xuất phát từ A đến B cùng một lúc với xe tải và xe máy thứ nhất nhưng đi với vận tốc 40 km/h. Hãy viết biểu thức tính quãng đường xe tải, xe máy thứ nhất và xe máy thứ hai đi được sau t giờ.
(a) Sau \[t\] giờ, xe tải, xe thứ nhất, xe thứ hai lần lượt đi được quãng đường là \(50t;\,\,30t;\,\,20t.\)
(b) Xe máy thứ hai luôn ở vị trí chính giữa xe tải và xe máy thứ nhất.
(c) Quãng đường xe máy thứ hai đi được sau khi xe con xuất phát \[x\] giờ là \(40x\,\,\left( {{\rm{km}}} \right).\)
(d) Xe con ở chính giữa xe máy thứ nhất và xe tải lúc 4 giờ.
Quảng cáo
Trả lời:
a) Đúng. Sau \[t\] giờ, xe tải đi được quãng đường là: \[\;{S_1} = 50t\,\,\left( {{\rm{km}}} \right).\]
Sau \[t\] giờ, xe máy thứ nhất đi được quãng đường là: \[{S_2} = 30t\,\,\left( {{\rm{km}}} \right).\]
Sau \[t\] giờ, xe máy thứ hai đi được quãng đường là: \[{S_3} = 40{\rm{t}}\,\,\left( {{\rm{km}}} \right)\]
b) Đúng. Ta thấy: \[{S_3} = 40t = \frac{{80t}}{2} = \frac{{t\left( {50 + 30} \right)}}{2} = \frac{{50t + 30t}}{2} = \frac{{{S_1} + {S_2}}}{2}\] nên xe máy thứ hai luôn ở vị trí chính giữa xe tải và xe máy thứ nhất.
c) Sai. Vì xe tải và hai xe máy cùng khởi hành sớm hơn xe con 2 giờ nên khi xe con đi được x giờ thì xe máy thứ hai đi được \[\left( {x + 2} \right)\] giờ.
Quãng đường xe máy thứ hai đi được là: \[40\left( {x + 2} \right)\,\,\left( {{\rm{km}}} \right)\]
d) Sai. Sau x giờ, xe con đi được quãng đường là: \[S = 60x{\rm{ }}\left( {{\rm{km}}} \right)\]
Vì xe máy thứ hai luôn ở vị trí chính giữa xe tải và xe máy thứ nhất nên xe con sẽ ở chính giữa xe tải và xe máy thứ nhất khi và chỉ khi xe con đuổi kịp xe máy thứ hai, tức là:
\(S = S'\) nên \[60x = 40\left( {x + 2} \right)\]
\[60x = 40x + 40 \cdot 2\]
\[60x--40x = 80\]
\[x\left( {60--40} \right) = 80\]
\[20x = 80\]
\[x = 4\] (giờ)
Xe con sẽ ở vị trí chính giữa xe tải và xe máy thứ nhất vào lúc: \[8 + 4 = 12\] giờ trưa.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: 1540.
Ta có \(S = {2^2} + {4^2} + {6^2} + \ldots + {20^2}\)
\[ = {2^2} \cdot {1^2} + {2^2} \cdot {2^2} + {2^2} \cdot {3^2} + \ldots + {2^2} \cdot {10^2}\]
\[ = {2^2}\left( {{1^2} + {2^2} + {3^2} + \ldots + {{10}^2}} \right)\]
\[ = 4 \cdot 385 = 1540.\]
Vậy \[S = 1540.\]
Lời giải
a) Sai. Nếu bạn học sinh đó trả lời đúng cả 20 câu thì tổng số điểm đạt được là: \[10 \cdot 20 = 200\] (điểm). Mà \(200 > 147\) nên bạn học sinh đó không trả lời đúng tất cả các câu hỏi.
b) Đúng. Khi bạn học sinh trả lời đúng 1 câu và trả lời sai 1 câu thì bạn ấy được: \(10 - 3 = 7\) (điểm).
c) Sai. Số điểm dư ra là \[200-148 = 52\] (điểm).
Thay mỗi câu trả lời sai thành câu trả lời đúng thì dư ra \[10 + 3 = 13\] (điểm).
Số câu trả lời sai là \[52:13 = 4\] (câu)
d) Sai. Số câu trả lời đúng \[20 - 4 = 16\] (câu)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.