Cho \(a = 2m + 3\) và \(b = 2n + 1\). Khi đó,
(a) \(a\,\, \vdots \,\,2\).
(b) \(b\,\,\not \vdots \,\,2.\)
(c) \(\left( {a + b} \right)\,\,\not \vdots \,\,2.\)
(d) \(\left( {a - b} \right)\,\, \vdots \,\,\left( {m - n + 1} \right).\)
Quảng cáo
Trả lời:
a) Sai.
Nhận thấy \(2m\,\, \vdots \,\,2\) và \(3\not \vdots 2\) nên \(\left( {2m + 3} \right)\,\,\not \vdots \,\,2\) hay \(a\,\,\not \vdots \,\,2\).
b) Đúng.
Nhận thấy \(2n\,\, \vdots \,\,2\) và \(1\,\,\not \vdots \,\,2\) nên \(\left( {2n + 1} \right)\,\,\not \vdots \,\,2\) hay \(b\,\,\not \vdots \,\,2.\)
c) Sai.
Có \(a + b = 2m + 3 + 2n + 1 = 2\left( {m + n} \right) + 4 = 2\left( {m + n + 2} \right) \vdots 2\).
Do đó, \(\left( {a + b} \right)\,\, \vdots \,\,2.\)
d) Đúng.
Có \(a - b = 2m + 3 - 2n - 1 = 2\left( {m - n + 1} \right)\,\, \vdots \,\,\left( {m - n + 1} \right)\).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: \(0\)
Vì \(15\,\, \vdots \,\,3\) nên \(\left( {13 \cdot 14 \cdot 15} \right)\,\, \vdots \,\,3.\)
Ta có: \(13 \cdot 14 \cdot 15 = 13 \cdot 7 \cdot 2 \cdot 15 = 13 \cdot 7 \cdot 30.\) Vì \(30\,\, \vdots \,\,10\) nên \(\left( {13 \cdot 7 \cdot 30} \right)\,\, \vdots \,\,10\) hay \(\left( {13 \cdot 14 \cdot 15} \right)\,\, \vdots \,\,10.\)
Do đó, \(13 \cdot 14 \cdot 15\)vừa chia hết cho 3 vừa chia hết cho 10.
Để \(P = 13 \cdot 14 \cdot 15 + a\) vừa chia hết cho 3 vừa chia hết cho 10 thì \(a\) chia hết cho 10.
Mà \(a\) là số tự nhiên nhỏ hơn 10 nên \(a = 0.\) Vậy \(a = 0.\)
Lời giải
Đáp án: \(1\)
Ta có: \(n + 7 = n + 2 + 5.\)
Để \(n + 7\) chia hết cho \(n + 2\) thì 5 chia hết cho \(n + 2.\)
Do đó, \(\left( {n + 2} \right) \in \)Ư\(\left( 5 \right) = \left\{ {1;\;{\rm{ }}5} \right\}.\)
Vì \(n \ge 0\) nên \(n + 2 \ge 2.\) Do đó, \(n + 2 = 5\) nên \(n = 3.\)
Vậy có một số tự nhiên \(n\) sao cho \(n + 7\) chia hết cho \(n + 2.\)
Câu 3
\(\left( {a + 2b} \right)\,\,\cancel{ \vdots }\,\,3.\)
\(\left( {a + b} \right)\,\, \vdots \,\,3.\)
\(\left( {a + b} \right)\,\,\cancel{ \vdots }\,\,3.\)
\(\left( {2a - b} \right)\,\,\cancel{ \vdots }\,\,3.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.