Có bao nhiêu số tự nhiên \(a\;\left( {a > 1} \right)\) sao cho \(a - 1;\;a;{\rm{ }}a + 4\) đều là các số nguyên tố?
Quảng cáo
Trả lời:

Đáp án: \(1\)
Nếu \(a\) là số chẵn thì \(a + 4\) cũng là số chẵn. Mà chỉ có duy nhất một số nguyên tố chẵn là 2. Do đó, \(a\) và \(a + 4\) không thể cùng là số nguyên tố (không thỏa mãn).
Nếu \(a\) là số lẻ thì \(a - 1\) là số chẵn. Mà \(a - 1\) là số nguyên tố nên \(a - 1 = 2,\) suy ra \(a = 3.\) Khi đó \(a + 4 = 3 + 4 = 7\) là số nguyên tố (thỏa mãn).
Vậy có một số tự nhiên \(a\) thỏa mãn yêu cầu bài toán.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn đáp án D
Vì số nguyên tố là số tự nhiên lớn hơn \(1,\) chỉ có hai ước là \(1\) và chính nó nên B, C sai.
Số \(2\) là số nguyên tố nên khẳng định “Các số nguyên tố đều là số lẻ” là sai.
Lời giải
a) Sai.
Với \(p = 2\) thì \(p + 2 = 2 + 2 = 4\) và \(p + 4 = 2 + 4 = 6\).
Do đó, \(p = 2\) thì \(p + 2;\,\,p + 4\) là các hợp số.
b) Sai.
Với \(p = 3\) thì \(p + 2 = 2 + 3 = 5\) và \(p + 4 = 3 + 4 = 7\).
Do đó, \(p = 3\) thì \(p + 2;\,\,p + 4\) là các số nguyên tố.
c) Đúng.
Với \(p = 3k + 1{\rm{ }}\left( {k \in {\mathbb{N}^*}} \right)\) thì \(p + 2 = 3k + 3 = 3\left( {k + 1} \right)\).
Do đó \(\left( {p + 2} \right) \vdots 3\), mà \[p + 2 > 3{\rm{ }}\left( {{\rm{do }}k \in {\mathbb{N}^*}} \right)\] nên với \(p = 3k + 1{\rm{ }}\left( {k \in {\mathbb{N}^*}} \right)\) thì \(p + 2\) là hợp số.
d) Đúng
Với \(p = 3k + 2{\rm{ }}\left( {k \in {\mathbb{N}^*}} \right)\) thì \(p + 4 = 3k + 6 = 3\left( {k + 2} \right)\).
Do đó, \(\left( {p + 4} \right) \vdots 3\), mà \[p + 4 > 3{\rm{ }}\left( {{\rm{do }}k \in {\mathbb{N}^*}} \right)\] nên với \(p = 3k + 2{\rm{ }}\left( {k \in {\mathbb{N}^*}} \right)\) thì \(p + 4\) là hợp số.
Từ phần b), c), d) suy ra chỉ vó giá trị \(p = 3\) thỏa mãn để \(p + 2;\,\,p + 4\) là các số nguyên tố.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.