Cho \(a\) là số có hai chữ số nhỏ nhất chia hết cho 3; \(b\) là bội của 4 và \(12 < b < 20\).
a) \(a = 12.\)
b) \({\rm{B}}\left( b \right) = \left\{ {0;\,\,4;\,\,\,8;\,\,\,12;\,\,\,16} \right\}.\)
c) \({\rm{BCNN}}\left( {a,\;b} \right) = 48.\)
d) Có bốn bội chung của \(a\) và \(b\)nhỏ hơn 150.
Quảng cáo
Trả lời:

a) Đúng
Vì \(a\) là số có hai chữ số nhỏ nhất chia hết cho 3 nên ta có \(a\) là bội của 3.
Mà \({\rm{B}}\left( 3 \right) = \left\{ {0;\,\,3;\,\,6;\,\,9;\,\,12;\,\,15;....} \right\}\).
Do đó, \(a = 12\).
b) Sai.
Vì \(b\) là bội của 4 nên ta có: \({\rm{B}}\left( 4 \right) = \left\{ {0;\;\,4;\,\,\,8;\,\,\,16;\;\,32;\;\,48;\;\,64;\;.....} \right\}.\)
Mà \(12 < b < 20\) nên \(b = 16.\)
Ta có: \({\rm{B}}\left( {16} \right) = \left\{ {0;\;\,16;\;\,32;\;\,48;\;\,64;\;\,80;\;\,96;\;\,112;\;...} \right\}.\)
c) Đúng.
Ta có: \({\rm{B}}\left( {12} \right) = \left\{ {0;\;\,12;\;\,24;\;\,36;\;\,48;\;\,60;\;\,72;\;\,84;\;...} \right\}.\)
\({\rm{B}}\left( {16} \right) = \left\{ {0;\;\,16;\;\,32;\;\,48;\;\,64;\;\,80;\;\,96;\;\,112;\;...} \right\}.\)
Từ đây, suy ra: \({\rm{BCNN}}\left( {12,\;{\rm{ }}16} \right) = 48\) hay \({\rm{BCNN}}\left( {a,\;b} \right) = 48.\)
d) Đúng.
Vì \({\rm{BCNN}}\left( {12,\;{\rm{ }}16} \right) = 48\) nên \({\rm{BC}}\left( {12,\;16} \right) = {\rm{B}}\left( {48} \right) = \left\{ {0;\;{\rm{ }}48;\;{\rm{ }}96;\;{\rm{ }}144;\;{\rm{ }}192...} \right\}.\)
Vậy có bốn bội chung của 12 và 16 nhỏ hơn 150 hay có bốn bội chung của \(a\) và \(b\)nhỏ hơn 150.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đúng.
Ta có: \(8 = {2^3};\;{\rm{ }}12 = {2^2} \cdot 3;\;{\rm{ }}10 = 2 \cdot 5.\) Do đó, BCNN\(\left( {8;\;\,12;\;\,10} \right) = {2^3} \cdot 3 \cdot 5 = 120.\)
Vậy có thể lấy mẫu chung của ba phân số trên là 120.
b) Đúng.
Ta có: \(\frac{1}{8} = \frac{{1 \cdot 15}}{{8 \cdot 15}} = \frac{{15}}{{120}};\;\,\frac{5}{{12}} = \frac{{5 \cdot 10}}{{12 \cdot 10}} = \frac{{50}}{{120}};\;\,\frac{3}{{10}} = \frac{{3 \cdot 12}}{{10 \cdot 12}} = \frac{{36}}{{120}}.\)
Vậy quy đồng mẫu ba phân số \(\frac{1}{8};\;\,\frac{5}{{12}};\;\,\frac{3}{{10}}\) ta được lần lượt là: \(\frac{{15}}{{120}};\;\,\frac{{50}}{{120}};\;\,\frac{{36}}{{120}}.\)
c) Đúng.
\(\frac{1}{8} + \frac{5}{{12}} = \frac{{15}}{{120}} + \frac{{50}}{{120}} = \frac{{65}}{{120}} = \frac{{65:5}}{{120:5}} = \frac{{13}}{{24}}.\) Vậy tổng của hai phân số \(\frac{1}{8}\) và \(\frac{5}{{12}}\) bằng \(\frac{{13}}{{24}}.\)
d) Sai.
Ta có: \(\frac{1}{8} + \frac{5}{{12}} - \frac{3}{{10}} = \frac{{65}}{{120}} - \frac{{36}}{{120}} = \frac{{29}}{{120}}.\)
Vậy tổng của hai phân số \(\frac{1}{8}\) và \(\frac{5}{{12}}\) lớn hơn phân số \(\frac{3}{{10}}\) là \(\frac{{29}}{{120}}.\)
Lời giải
a) Sai.
Vì cứ 7 ngày, Hà đến siêu thị một lần và cứ 3 ngày, Hà đến thư viện một lần nên kể từ ngày hôm nay, số ngày để Hà lại vừa đi thư viện vừa đi siêu thị là bội chung của 3 và 7.
b) Đúng.
Vì kể từ hôm nay, số ngày để Hà lại vừa đi thư viện vừa đi siêu thị là bội chung của 3 và 7. Mà số ngày là ít nhất nên kể từ hôm nay, số ngày ít nhất để Hà lại vừa đi thư viện vừa đi siêu thị là bội chung nhỏ nhất của 3 và 7.
c) Đúng.
Ta có: ƯCLN\(\left( {3,\;7} \right) = 1\) nên BCNN\(\left( {3,\;7} \right) = 3 \cdot 7 = 21.\)
Vậy kể từ hôm nay, số ngày ít nhất để Hà lại vừa đi thư viện vừa đi siêu thị là 21 ngày.
d) Sai.
Vì BCNN\(\left( {3,\;7} \right) = 21\) nên BC\(\left( {3,\;7} \right) = \left\{ {0;\;\,21;\;\,42;\;...} \right\}.\)
Do đó, kể từ hôm nay, sau 40 ngày, Hà không thể lại vừa đi thư viện vừa đi siêu thị.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.