Lớp 10A có 45 học sinh trong đó có 20 học sinh nam và 25 học sinh nữ. Trong bài kiểm tra môn Toán cả lớp có 22 học sinh đạt điểm giỏi (trong đó có 10 học sinh nam và 12 học sinh nữ). Giáo viên chọn ngẫu nhiên một học sinh từ danh sách lớp. Tính xác suất để giáo viên chọn được một học sinh đạt điểm giỏi môn Toán biết học sinh đó là học sinh nam.
Quảng cáo
Trả lời:

Chọn A
Gọi \(A\) là biến cố “Chọn được một học sinh nam”.
Gọi \(B\) là biến cố “Chọn được một học sinh đạt điểm giỏi môn Toán”.
\(A \cap B\) là biến cố “Chọn được một học sinh đạt điểm giỏi môn Toán biết học sinh đó là học sinh nam”.
Ta có \(P\left( {A \cap B} \right) = \frac{{10}}{{45}} = \frac{2}{9}\); \(P\left( A \right) = \frac{{20}}{{45}} = \frac{4}{9}\).
\(P\left( {B|A} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( A \right)}} = \frac{1}{2}\).
Vậy xác suất để giáo viên chọn được một học sinh đạt điểm giỏi môn Toán biết học sinh đó là học sinh nam là \(\frac{1}{2}\).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn C
Ta có: \(P\left( {\bar B} \right) = 1 - P\left( B \right) = 1 - 0,6 = 0,4\).
Theo công thức xác suất toàn phần:
\(P\left( A \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\bar B} \right).P\left( {A|\bar B} \right) = 0,6.0,7 + 0,4.0,4 = 0,58\).
Lời giải
a) Gọi \(A\) là biến cố “Người mua bảo hiểm ô tô là đàn ông”, \(B\) là biến cố “Người mua bảo hiểm ô tô trên 40 tuổi”. Ta cần tính \[P\left( {B|A} \right)\].
Do có \(52\% \) người mua bảo hiểm ô tô là đàn ông nên \[P\left( A \right) = 0,52\].
Do có \(39\% \) số người mua bảo hiểm ô tô là đàn ông trên 40 tuổi nên \[P\left( {AB} \right) = 0,39\].
Vậy \[P\left( {B|A} \right) = \frac{{P\left( {AB} \right)}}{{P\left( A \right)}} = \frac{{0,39}}{{0,52}} = 0,75\].
b) Trong số những người đàn ông mua bảo hiểm ô tô thì có 75% người trên 40 tuổi.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.