Có hai chiếc hộp. Hộp thứ nhất có \[5\] viên bi xanh và \[7\] viên bi đỏ. Hộp thứ hai có \[6\] viên bi xanh và \[8\] viên bi đỏ. Các viên bi có cùng kích thước và khối lượng. Lấy ra ngẫu nhiên \[1\] viên bi từ hộp thứ nhất chuyển sang hộp thứ hai. Sau đó lại lấy ra ngẫu nhiên đồng thời \[2\] viên bi từ hộp thứ hai. Gọi \[A\] là biến cố “Lấy được 1 viên bi màu xanh ở hộp thứ nhất” và \[B\] là biến cố “Lấy được 2 viên bi màu đỏ ở hộp thứ hai”.
a) \(P\left( {\overline A } \right) = \frac{5}{{12}}\).
b) \[P\left( {B|A} \right) = \frac{1}{{15}}\].
c) \[P\left( {B|\overline A } \right) = \frac{{12}}{{35}}\].
d) \(P\left( B \right) = \frac{{14}}{{45}}\).
Có hai chiếc hộp. Hộp thứ nhất có \[5\] viên bi xanh và \[7\] viên bi đỏ. Hộp thứ hai có \[6\] viên bi xanh và \[8\] viên bi đỏ. Các viên bi có cùng kích thước và khối lượng. Lấy ra ngẫu nhiên \[1\] viên bi từ hộp thứ nhất chuyển sang hộp thứ hai. Sau đó lại lấy ra ngẫu nhiên đồng thời \[2\] viên bi từ hộp thứ hai. Gọi \[A\] là biến cố “Lấy được 1 viên bi màu xanh ở hộp thứ nhất” và \[B\] là biến cố “Lấy được 2 viên bi màu đỏ ở hộp thứ hai”.
a) \(P\left( {\overline A } \right) = \frac{5}{{12}}\).
b) \[P\left( {B|A} \right) = \frac{1}{{15}}\].
c) \[P\left( {B|\overline A } \right) = \frac{{12}}{{35}}\].
d) \(P\left( B \right) = \frac{{14}}{{45}}\).
Quảng cáo
Trả lời:

a) Sai. Ta có: \(P\left( A \right) = \frac{5}{{12}} \Rightarrow P\left( {\overline A } \right) = 1 - P\left( A \right) = \frac{7}{{12}}\).
b) Sai. Nếu \(A\) xảy ra thì khi đó hộp hai chứa \(7\) bi xanh và \(8\) bi đỏ.
Chọn hai bi bất kì từ hộp hai có \(C_{15}^2\) cách. Chọn hai bi đỏ từ hộp hai có \(C_8^2\) cách.
Suy ra: \[P\left( {B|A} \right) = \frac{{C_8^2}}{{C_{15}^2}} = \frac{4}{{15}}\].
c) Đúng. Nếu \(A\) không xảy ra thì khi đó hộp hai chứa \(6\) bi xanh và \(9\) bi đỏ.
Chọn hai bi bất kì từ hộp hai có \(C_{15}^2\) cách. Chọn hai bi đỏ từ hộp hai có \(C_9^2\) cách.
Suy ra: \[P\left( {B|\overline A } \right) = \frac{{C_9^2}}{{C_{15}^2}} = \frac{{12}}{{35}}\].
d) Đúng. Áp dụng công thức xác suất toàn phần:
\[P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P(B\mid \overline A ) = \frac{5}{{12}}.\frac{4}{{15}} + \frac{7}{{12}}.\frac{{12}}{{35}} = \frac{{14}}{{45}}\].
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn C
Ta có: \(P\left( {\bar B} \right) = 1 - P\left( B \right) = 1 - 0,6 = 0,4\).
Theo công thức xác suất toàn phần:
\(P\left( A \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\bar B} \right).P\left( {A|\bar B} \right) = 0,6.0,7 + 0,4.0,4 = 0,58\).
Lời giải
a) Gọi \(A\) là biến cố “Người mua bảo hiểm ô tô là đàn ông”, \(B\) là biến cố “Người mua bảo hiểm ô tô trên 40 tuổi”. Ta cần tính \[P\left( {B|A} \right)\].
Do có \(52\% \) người mua bảo hiểm ô tô là đàn ông nên \[P\left( A \right) = 0,52\].
Do có \(39\% \) số người mua bảo hiểm ô tô là đàn ông trên 40 tuổi nên \[P\left( {AB} \right) = 0,39\].
Vậy \[P\left( {B|A} \right) = \frac{{P\left( {AB} \right)}}{{P\left( A \right)}} = \frac{{0,39}}{{0,52}} = 0,75\].
b) Trong số những người đàn ông mua bảo hiểm ô tô thì có 75% người trên 40 tuổi.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.