Câu hỏi:

07/10/2025 52 Lưu

Có hai chiếc hộp. Hộp thứ nhất có \[5\] viên bi xanh và \[7\] viên bi đỏ. Hộp thứ hai có \[6\] viên bi xanh và \[8\] viên bi đỏ. Các viên bi có cùng kích thước và khối lượng. Lấy ra ngẫu nhiên \[1\] viên bi từ hộp thứ nhất chuyển sang hộp thứ hai. Sau đó lại lấy ra ngẫu nhiên đồng thời \[2\] viên bi từ hộp thứ hai. Gọi \[A\] là biến cố “Lấy được 1 viên bi màu xanh ở hộp thứ nhất” và \[B\] là biến cố “Lấy được 2 viên bi màu đỏ ở hộp thứ hai”.

a) \(P\left( {\overline A } \right) = \frac{5}{{12}}\).

b) \[P\left( {B|A} \right) = \frac{1}{{15}}\].

c) \[P\left( {B|\overline A } \right) = \frac{{12}}{{35}}\].

d) \(P\left( B \right) = \frac{{14}}{{45}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Sai. Ta có: \(P\left( A \right) = \frac{5}{{12}} \Rightarrow P\left( {\overline A } \right) = 1 - P\left( A \right) = \frac{7}{{12}}\).

b) Sai. Nếu \(A\) xảy ra thì khi đó hộp hai chứa \(7\) bi xanh và \(8\) bi đỏ.

Chọn hai bi bất kì từ hộp hai có \(C_{15}^2\) cách. Chọn hai bi đỏ từ hộp hai có \(C_8^2\) cách.

Suy ra: \[P\left( {B|A} \right) = \frac{{C_8^2}}{{C_{15}^2}} = \frac{4}{{15}}\].

c) Đúng. Nếu \(A\) không xảy ra thì khi đó hộp hai chứa \(6\) bi xanh và \(9\) bi đỏ.

Chọn hai bi bất kì từ hộp hai có \(C_{15}^2\) cách. Chọn hai bi đỏ từ hộp hai có \(C_9^2\) cách.

Suy ra: \[P\left( {B|\overline A } \right) = \frac{{C_9^2}}{{C_{15}^2}} = \frac{{12}}{{35}}\].

d) Đúng. Áp dụng công thức xác suất toàn phần:

\[P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P(B\mid \overline A ) = \frac{5}{{12}}.\frac{4}{{15}} + \frac{7}{{12}}.\frac{{12}}{{35}} = \frac{{14}}{{45}}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giả sử \(T\) là biến cố “ Gặp sinh viên thi trượt môn Toán”, có \(P\left( T \right) = 0,3\).

\(L\) là biến cố “Gặp sinh viên thi trượt môn Tâm lý”, có \(P\left( L \right) = 0,22\). Khi đó \(P\left( {L|T} \right) = 0,4\).

Sơ đồ hình cây:

Trong năm học vừa qua, ở trường đại học X, tỉ lệ sinh viên thi trượt môn Toán là \(30\% \ (ảnh 1)

a) Sai. Vì xác suất gặp sinh viên thi trượt cả môn Toán và Tâm Lý là:

\(P\left( {TL} \right) = P\left( T \right)P\left( {L|T} \right) = 0,3.0,4 = 0,12\).

b) Đúng. Xác suất gặp sinh viên đậu cả môn Toán và Tâm lý là

\(P\left( {\overline {TL} } \right) = 1 - P\left( {T \cup L} \right) = 1 - P\left( T \right) - P\left( L \right) + P\left( {TL} \right) = 1 - 0,3 - 0,22 + 0,12 = 0,6\).

c) Sai. Xác suất gặp sinh viên đậu môn Toán, biết rằng sinh viên này trượt môn Tâm lý là

\(P\left( {\overline T |L} \right) = \frac{{P\left( {\overline T L} \right)}}{{P\left( L \right)}} = \frac{{P\left( L \right) - P\left( {TL} \right)}}{{P\left( L \right)}} = \frac{{0,22 - 0,12}}{{0,22}} = 0,45\).

d) Đúng. Theo công thức tính xác suất toàn phần, xác suất gặp sinh viên đậu môn Tâm lý là

\(P\left( {\overline L } \right) = P\left( T \right).P\left( {\overline L |T} \right) + P\left( {\overline T } \right).P\left( {\overline L |\overline T } \right) = 0,3.0,6 + 0,7.0,78 = 0,726\).

Lời giải

Chọn A

Tập hợp các kết quả thuận lợi cho biến cố \(A\)là \(\left\{ {\left( {3;1} \right),\left( {3;2} \right),\left( {3;4} \right)} \right\}\).

Vậy \(n\left( A \right) = 3\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\frac{3}{{20}}\).      
B. \(\frac{4}{5}\).         
C. \(\frac{1}{5}\).                
D. \(\frac{3}{5}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[0,35\].                      
B. \[0,3\].                      
C. \[0,65\].                           
D. \[0,55\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP