Câu hỏi:

07/10/2025 28 Lưu

Dạng 3. Trắc nghiệm trả lời ngắn

 Một hộp có 80 viên bi, trong đó có 50 viên bi màu đỏ và 30 viên bi màu vàng; các viên bi có kích thước và khối lượng như nhau. Sau khi kiểm tra, người ta thấy có 90% số viên bi màu đỏ được đánh số và 50% số viên bi màu vàng được đánh số, những viên bi còn lại không đánh số. Lấy ra ngẫu nhiên một viên bi trong hộp. Tính xác suất để viên bi được lấy ra có đánh số (kết quả để dưới dạng số thập phân và làm tròn đến hàng phần trăm).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \[A\]là biến cố: “Viên bi được lấy ra có đánh số”.

Gọi \[B\] là biến cố: “Viên bi được lấy ra có màu đỏ”, suy ra \[\overline B \]là biến cố: “Viên bi được lấy ra có màu vàng”.

Khi đó, ta có: \[P\left( B \right) = \frac{{50}}{{80}} = \frac{5}{8};{\rm{ }}P\left( {\overline B } \right) = \frac{{30}}{{80}} = \frac{3}{8}\]; \[P\left( {A|B} \right) = 90\%  = \frac{9}{{10}};{\rm{ }}P\left( {A|\overline B } \right) = 50\%  = \frac{1}{2}\].

Áp dụng công thức xác suất toàn phần, ta có:

\[P\left( A \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right) = \frac{5}{8}.\frac{9}{{10}} + \frac{3}{8}.\frac{1}{2} = \frac{3}{4} = 0,75\].

Đáp án: 0,75.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giả sử \(T\) là biến cố “ Gặp sinh viên thi trượt môn Toán”, có \(P\left( T \right) = 0,3\).

\(L\) là biến cố “Gặp sinh viên thi trượt môn Tâm lý”, có \(P\left( L \right) = 0,22\). Khi đó \(P\left( {L|T} \right) = 0,4\).

Sơ đồ hình cây:

Trong năm học vừa qua, ở trường đại học X, tỉ lệ sinh viên thi trượt môn Toán là \(30\% \ (ảnh 1)

a) Sai. Vì xác suất gặp sinh viên thi trượt cả môn Toán và Tâm Lý là:

\(P\left( {TL} \right) = P\left( T \right)P\left( {L|T} \right) = 0,3.0,4 = 0,12\).

b) Đúng. Xác suất gặp sinh viên đậu cả môn Toán và Tâm lý là

\(P\left( {\overline {TL} } \right) = 1 - P\left( {T \cup L} \right) = 1 - P\left( T \right) - P\left( L \right) + P\left( {TL} \right) = 1 - 0,3 - 0,22 + 0,12 = 0,6\).

c) Sai. Xác suất gặp sinh viên đậu môn Toán, biết rằng sinh viên này trượt môn Tâm lý là

\(P\left( {\overline T |L} \right) = \frac{{P\left( {\overline T L} \right)}}{{P\left( L \right)}} = \frac{{P\left( L \right) - P\left( {TL} \right)}}{{P\left( L \right)}} = \frac{{0,22 - 0,12}}{{0,22}} = 0,45\).

d) Đúng. Theo công thức tính xác suất toàn phần, xác suất gặp sinh viên đậu môn Tâm lý là

\(P\left( {\overline L } \right) = P\left( T \right).P\left( {\overline L |T} \right) + P\left( {\overline T } \right).P\left( {\overline L |\overline T } \right) = 0,3.0,6 + 0,7.0,78 = 0,726\).

Lời giải

Chọn A

Tập hợp các kết quả thuận lợi cho biến cố \(A\)là \(\left\{ {\left( {3;1} \right),\left( {3;2} \right),\left( {3;4} \right)} \right\}\).

Vậy \(n\left( A \right) = 3\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\frac{3}{{20}}\).      
B. \(\frac{4}{5}\).         
C. \(\frac{1}{5}\).                
D. \(\frac{3}{5}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[0,35\].                      
B. \[0,3\].                      
C. \[0,65\].                           
D. \[0,55\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP