Câu hỏi:

07/10/2025 1 Lưu

Có hai hộp bóng bàn, các quả bóng bàn có kích thước và hình dạng như nhau. Hộp thứ nhất có 3 quả bóng bàn màu trắng và 2 quả bóng bàn màu vàng. Hộp thứ hai có 6 quả bóng bàn màu trắng và 4 quả bóng bàn màu vàng. Lấy ngẫu nhiên 4 quả bóng bàn ở hộp thứ nhất bỏ vào hộp thứ hai rồi lấy ngẫu nhiên 1 quả bóng bàn ở hộp thứ hai ra. Tính xác suất để lấy được quả bóng bàn màu vàng từ hộp thứ hai.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Vì hộp thứ nhất có 3 quả bóng bàn màu trắng và 2 quả bóng bàn màu vàng nên khi lấy 4 quả bóng bàn ở hộp thứ nhất thì có hai khả năng: khả năng thứ nhất là lấy được 3 quả bóng bàn màu trắng và 1 quả bóng bàn màu vàng; khả năng thứ hai là lấy được 2 quả bóng bàn màu trắng và 2 quả bóng bàn màu vàng.

Xét các biến cố:

A: “Lấy được quả bóng bàn màu vàng từ hộp thứ hai”;

\[B\]: “Lấy được 4 quả bóng bàn ở hộp thứ nhất, trong đó có 1 quả bóng bàn màu vàng”;

\(\bar B\): “Lấy được 4 quả bóng bàn ở hộp thứ nhất, trong đó có 2 quả bóng bàn màu vàng”.

Trường hợp 1: Số cách lấy 4 quả bóng bàn từ hộp thứ nhất là \(C_5^4\), có 1 cách lấy 3 quả bóng bàn màu trắng và 2 cách lấy 1 quả bóng bàn màu vàng, suy ra \(P\left( B \right) = \frac{{1.2}}{{C_5^4}} = \frac{2}{5}\).

Vì khi đó hộp thứ hai có 9 quả bóng bàn màu trắng và 5 quả bóng bàn màu vàng nên \(P\left( {A\mid B} \right) = \frac{5}{{14}}\).

Trường hợp 2: Số cách lấy 4 quả bóng bàn từ hộp thứ nhất là \(C_5^4\), có \(C_3^2\) cách lấy 2 quả bóng bàn màu trắng và 1 cách lấy 2 quả bóng bàn màu vàng, suy ra \(P\left( {\bar B} \right) = \frac{{C_3^2.1}}{{C_5^4}} = \frac{3}{5}\).

Vì khi đó hộp thứ hai có 8 quả bóng bàn màu trắng và 6 quả bóng bàn màu vàng nên

\[P\left( {A\mid \bar B} \right) = \frac{6}{{14}}\].

Theo công thức xác suất toàn phần, ta có:

\[P\left( A \right){\rm{ =  }}P\left( B \right).P\left( {A\mid B} \right) + P\left( {\bar B} \right){\rm{.}}P\left( {A\mid \bar B} \right) = \frac{2}{5} \cdot \frac{5}{{14}} + \frac{3}{5} \cdot \frac{6}{{14}} = 0,4\].

Vậy xác suất để lấy được quả bóng bàn màu vàng từ hộp thứ hai là \(0,4\).

Đáp án: 0,4.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(0,7\).                        
B. \(0,4\).                      
C. \(0,58\).                           
D. \(0,52\).

Lời giải

Chọn C

Ta có: \(P\left( {\bar B} \right) = 1 - P\left( B \right) = 1 - 0,6 = 0,4\).

Theo công thức xác suất toàn phần:

\(P\left( A \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\bar B} \right).P\left( {A|\bar B} \right) = 0,6.0,7 + 0,4.0,4 = 0,58\).

Lời giải

a) Gọi \(A\) là biến cố “Người mua bảo hiểm ô tô là đàn ông”, \(B\) là biến cố “Người mua bảo hiểm ô tô trên 40 tuổi”. Ta cần tính \[P\left( {B|A} \right)\].

Do có \(52\% \) người mua bảo hiểm ô tô là đàn ông nên \[P\left( A \right) = 0,52\].

Do có \(39\% \) số người mua bảo hiểm ô tô là đàn ông trên 40 tuổi nên \[P\left( {AB} \right) = 0,39\].

Vậy \[P\left( {B|A} \right) = \frac{{P\left( {AB} \right)}}{{P\left( A \right)}} = \frac{{0,39}}{{0,52}} = 0,75\].

b) Trong số những người đàn ông mua bảo hiểm ô tô thì có 75% người trên 40 tuổi.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP