Thống kê hồ sơ 250 học sinh khối 10 trong đó có 150 học sinh nữ và 100 học sinh nam. Sau khi thống kê, kết quả có \(60\% \) học sinh nữ là đoàn viên, \(50\% \) học sinh nam là đoàn viên; những học sinh còn lại không là đoàn viên. Chọn ngẫu nhiên một học sinh trong 250 học sinh khối 10. Tính xác suất để học sinh được chọn là đoàn viên.
Thống kê hồ sơ 250 học sinh khối 10 trong đó có 150 học sinh nữ và 100 học sinh nam. Sau khi thống kê, kết quả có \(60\% \) học sinh nữ là đoàn viên, \(50\% \) học sinh nam là đoàn viên; những học sinh còn lại không là đoàn viên. Chọn ngẫu nhiên một học sinh trong 250 học sinh khối 10. Tính xác suất để học sinh được chọn là đoàn viên.
Quảng cáo
Trả lời:
Lời giải
Số học sinh nữ là đoàn viên là \(60\% .150 = 90\) (học sinh).
Số học sinh nam là đoàn viên là \(50\% .100 = 50\) (học sinh).
Xét biến cố: \(A\) là biến cố “Chọn được học sinh là đoàn viên”.
\(B\) là biến cố “ Chọn được học sinh nam”. Khi đó:
\[P\left( B \right) = \frac{{100}}{{250}} = \frac{2}{5}\]; \[P\left( {\overline B } \right) = 1 - P\left( B \right) = 1 - \frac{2}{5} = \frac{3}{5}\].
\[P\left( {A|B} \right) = \frac{{50}}{{100}} = 0,5\]; \[P\left( {A|\overline B } \right) = \frac{{90}}{{150}} = 0,6\].
Áp dụng công thức xác suất toàn phần ta có:
\[P\left( A \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right) = \frac{2}{5}.0,5 + \frac{3}{5}.0,6 = 0,56\].
Đáp án: 0,56.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Giả sử \(T\) là biến cố “ Gặp sinh viên thi trượt môn Toán”, có \(P\left( T \right) = 0,3\).
\(L\) là biến cố “Gặp sinh viên thi trượt môn Tâm lý”, có \(P\left( L \right) = 0,22\). Khi đó \(P\left( {L|T} \right) = 0,4\).
Sơ đồ hình cây:

a) Sai. Vì xác suất gặp sinh viên thi trượt cả môn Toán và Tâm Lý là:
\(P\left( {TL} \right) = P\left( T \right)P\left( {L|T} \right) = 0,3.0,4 = 0,12\).
b) Đúng. Xác suất gặp sinh viên đậu cả môn Toán và Tâm lý là
\(P\left( {\overline {TL} } \right) = 1 - P\left( {T \cup L} \right) = 1 - P\left( T \right) - P\left( L \right) + P\left( {TL} \right) = 1 - 0,3 - 0,22 + 0,12 = 0,6\).
c) Sai. Xác suất gặp sinh viên đậu môn Toán, biết rằng sinh viên này trượt môn Tâm lý là
\(P\left( {\overline T |L} \right) = \frac{{P\left( {\overline T L} \right)}}{{P\left( L \right)}} = \frac{{P\left( L \right) - P\left( {TL} \right)}}{{P\left( L \right)}} = \frac{{0,22 - 0,12}}{{0,22}} = 0,45\).
d) Đúng. Theo công thức tính xác suất toàn phần, xác suất gặp sinh viên đậu môn Tâm lý là
\(P\left( {\overline L } \right) = P\left( T \right).P\left( {\overline L |T} \right) + P\left( {\overline T } \right).P\left( {\overline L |\overline T } \right) = 0,3.0,6 + 0,7.0,78 = 0,726\).
Câu 2
Lời giải
Chọn A
Tập hợp các kết quả thuận lợi cho biến cố \(A\)là \(\left\{ {\left( {3;1} \right),\left( {3;2} \right),\left( {3;4} \right)} \right\}\).
Vậy \(n\left( A \right) = 3\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.