Trước khi đưa sản phẩm ra thị trường, người ta đã phỏng vấn ngẫu nhiên 200 khách hàng về sản phẩm đó và thấy có 50 người trả lời “sẽ mua”, 90 người trả lời “có thể sẽ mua” và 60 người trả lời “không mua”. Kinh nghiệm cho thấy tỷ lệ khách hàng thực sự sẽ mua sản phẩm tương ứng với những cách trả lời trên tương ứng là 60%, 40% và 1%. Trong số khách hàng thực sự mua sản phẩm thì xác suất khách hàng trả lời “sẽ mua” là \[\frac{a}{b}\] (với \[\frac{a}{b}\] là phân số tối giản). Tính giá trị của biểu thức \[T = a + \frac{1}{2}b.\]
Trước khi đưa sản phẩm ra thị trường, người ta đã phỏng vấn ngẫu nhiên 200 khách hàng về sản phẩm đó và thấy có 50 người trả lời “sẽ mua”, 90 người trả lời “có thể sẽ mua” và 60 người trả lời “không mua”. Kinh nghiệm cho thấy tỷ lệ khách hàng thực sự sẽ mua sản phẩm tương ứng với những cách trả lời trên tương ứng là 60%, 40% và 1%. Trong số khách hàng thực sự mua sản phẩm thì xác suất khách hàng trả lời “sẽ mua” là \[\frac{a}{b}\] (với \[\frac{a}{b}\] là phân số tối giản). Tính giá trị của biểu thức \[T = a + \frac{1}{2}b.\]
Quảng cáo
Trả lời:

Gọi biến cố \[A\]: “Người được phỏng vấn sẽ mua sản phẩm”.
Biến cố \[{H_1}\]: “Khách hàng được phỏng vấn trả lời sẽ mua”.
Biến cố \[{H_2}\]: “Khách hàng được phỏng vấn trả lời có thể sẽ mua”.
Biến cố \[{H_3}\]: “Khách hàng được phỏng vấn trả lời không mua”.
Ta có \[P\left( {{H_1}} \right) = \frac{{50}}{{200}} = 0,25\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,P\left( {{H_2}} \right) = \frac{{90}}{{200}} = 0,45\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,P\left( {{H_3}} \right) = \frac{{60}}{{200}} = 0,3\,\,\,\,\,\,\,\,\,\,\,\,\,\,\]
\[P\left( {A|{H_1}} \right) = 0,6\,\,;\,\,\,P\left( {A|{H_2}} \right) = 0,4\,;\,\,P\left( {A|{H_3}} \right) = 0,1\,\,\,\,\,\,\,\,\,\,\]
Áp dụng công thức xác suất toàn phần, ta có tiềm năng của sản phẩm đó trên thị trường là
\(\begin{array}{l}P\left( A \right) = P\left( {{H_1}} \right).P\left( {A|{H_1}} \right) + P\left( {{H_2}} \right).P\left( {A|{H_2}} \right) + P\left( {{H_3}} \right).P\left( {A|{H_3}} \right)\\ = 0,25.0,6 + 0,45.0,4 + 0,3.0,1 = 0,36.\end{array}\)
Theo công thức Bayes, ta có xác suất khách hàng trả lời “sẽ mua” là
\(P\left( {{H_1}|A} \right) = \frac{{P\left( {{H_1}} \right).P\left( {A|{H_1}} \right)}}{{P\left( A \right)}} = \frac{{0,25.0,6}}{{0,36}} = \frac{5}{{12}}.\)
Suy ra \[a = 5,\,b = 12.\] Vậy \[T = a + \frac{1}{2}b = 5 + \frac{1}{2}.12 = 11.\]
Đáp án: 11.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn C
Ta có: \(P\left( {\bar B} \right) = 1 - P\left( B \right) = 1 - 0,6 = 0,4\).
Theo công thức xác suất toàn phần:
\(P\left( A \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\bar B} \right).P\left( {A|\bar B} \right) = 0,6.0,7 + 0,4.0,4 = 0,58\).
Lời giải
a) Gọi \(A\) là biến cố “Người mua bảo hiểm ô tô là đàn ông”, \(B\) là biến cố “Người mua bảo hiểm ô tô trên 40 tuổi”. Ta cần tính \[P\left( {B|A} \right)\].
Do có \(52\% \) người mua bảo hiểm ô tô là đàn ông nên \[P\left( A \right) = 0,52\].
Do có \(39\% \) số người mua bảo hiểm ô tô là đàn ông trên 40 tuổi nên \[P\left( {AB} \right) = 0,39\].
Vậy \[P\left( {B|A} \right) = \frac{{P\left( {AB} \right)}}{{P\left( A \right)}} = \frac{{0,39}}{{0,52}} = 0,75\].
b) Trong số những người đàn ông mua bảo hiểm ô tô thì có 75% người trên 40 tuổi.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.