Một nhà máy sản xuất pin điện thoại có 2 dây chuyền sản xuất. Dây chuyền I tạo ra 65% sản phẩm của toàn nhà máy; dây chuyền II tạo ra 35% sản phẩm của toàn nhà máy. Trong số các sản phẩm được sản xuất từ dây chuyền I có 3% sản phẩm bị lỗi, trong số các sản phẩm được sản xuất từ dây chuyền II có 2% sản phẩm bị lỗi. Chọn ngẫu nhiên một sản phẩm của nhà máy, gọi xác suất để sản phẩm đó là sản phẩm bị lỗi và được sản xuất từ dây chuyền I bằng P. Tính 1000P.
Một nhà máy sản xuất pin điện thoại có 2 dây chuyền sản xuất. Dây chuyền I tạo ra 65% sản phẩm của toàn nhà máy; dây chuyền II tạo ra 35% sản phẩm của toàn nhà máy. Trong số các sản phẩm được sản xuất từ dây chuyền I có 3% sản phẩm bị lỗi, trong số các sản phẩm được sản xuất từ dây chuyền II có 2% sản phẩm bị lỗi. Chọn ngẫu nhiên một sản phẩm của nhà máy, gọi xác suất để sản phẩm đó là sản phẩm bị lỗi và được sản xuất từ dây chuyền I bằng P. Tính 1000P.
Quảng cáo
Trả lời:
Gọi A là biến cố: “Chọn được một sản phẩm được sản xuất từ dây chuyền I”.
Gọi B là biến cố: “Chọn được một sản phẩm bị lỗi”.
Dây chuyền I tạo ra 65% sản phẩm của toàn nhà máy \[P\left( A \right) = 65\% = 0,65\].
Dây chuyền II tạo ra 35% sản phẩm của toàn nhà máy \[P\left( {\overline A } \right) = 35\% = 0,35\].
Do trong số các sản phẩm được sản xuất từ dây chuyền I có 3% sản phẩm bị lỗi \[P\left( {B\left| A \right.} \right) = 3\% = 0,03\] và trong số các sản phẩm được sản xuất từ dây chuyền II có 2% sản phẩm bị lỗi nên \[P\left( {B|\overline A } \right) = 2\% = 0,02\] .
Xác suất để sản phẩm đó là sản phẩm bị lỗi và được sản xuất từ dây chuyền I là \[P\left( {AB} \right) = P\].
Ta có \[P = P\left( {AB} \right) = P\left( A \right).P\left( {B|A} \right) = 0,65\,.\,0,03 = 0,0195\].
Vậy \[1000P = 1000\,.\,0,0195 = 19,5\].
Đáp án: 19,5.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Giả sử \(T\) là biến cố “ Gặp sinh viên thi trượt môn Toán”, có \(P\left( T \right) = 0,3\).
\(L\) là biến cố “Gặp sinh viên thi trượt môn Tâm lý”, có \(P\left( L \right) = 0,22\). Khi đó \(P\left( {L|T} \right) = 0,4\).
Sơ đồ hình cây:

a) Sai. Vì xác suất gặp sinh viên thi trượt cả môn Toán và Tâm Lý là:
\(P\left( {TL} \right) = P\left( T \right)P\left( {L|T} \right) = 0,3.0,4 = 0,12\).
b) Đúng. Xác suất gặp sinh viên đậu cả môn Toán và Tâm lý là
\(P\left( {\overline {TL} } \right) = 1 - P\left( {T \cup L} \right) = 1 - P\left( T \right) - P\left( L \right) + P\left( {TL} \right) = 1 - 0,3 - 0,22 + 0,12 = 0,6\).
c) Sai. Xác suất gặp sinh viên đậu môn Toán, biết rằng sinh viên này trượt môn Tâm lý là
\(P\left( {\overline T |L} \right) = \frac{{P\left( {\overline T L} \right)}}{{P\left( L \right)}} = \frac{{P\left( L \right) - P\left( {TL} \right)}}{{P\left( L \right)}} = \frac{{0,22 - 0,12}}{{0,22}} = 0,45\).
d) Đúng. Theo công thức tính xác suất toàn phần, xác suất gặp sinh viên đậu môn Tâm lý là
\(P\left( {\overline L } \right) = P\left( T \right).P\left( {\overline L |T} \right) + P\left( {\overline T } \right).P\left( {\overline L |\overline T } \right) = 0,3.0,6 + 0,7.0,78 = 0,726\).
Câu 2
Lời giải
Chọn A
Tập hợp các kết quả thuận lợi cho biến cố \(A\)là \(\left\{ {\left( {3;1} \right),\left( {3;2} \right),\left( {3;4} \right)} \right\}\).
Vậy \(n\left( A \right) = 3\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.