Một công ty du lịch bố trí chỗ nghỉ cho đoàn khách tại ba khách sạn \[A,\,B,\,C\] theo tỉ lệ \[20\]%, \[50\]%, \[30\]%. Tỉ lệ hỏng điều hòa ở ba khách sạn lần lượt là \[5\]%, \[4\]%, \[8\]%. Tính xác suất để một khách ở khách sạn \[C\], biết khách đó ở phòng điều hòa không bị hỏng (kết quả để dưới dạng số thập phân và làm tròn đến hàng phần trăm).
Một công ty du lịch bố trí chỗ nghỉ cho đoàn khách tại ba khách sạn \[A,\,B,\,C\] theo tỉ lệ \[20\]%, \[50\]%, \[30\]%. Tỉ lệ hỏng điều hòa ở ba khách sạn lần lượt là \[5\]%, \[4\]%, \[8\]%. Tính xác suất để một khách ở khách sạn \[C\], biết khách đó ở phòng điều hòa không bị hỏng (kết quả để dưới dạng số thập phân và làm tròn đến hàng phần trăm).
Quảng cáo
Trả lời:
Gọi biến cố \[H\]: “Khách nghỉ ở phòng có điều hòa bị hỏng”;
\(A\): “Khách nghỉ tại khách sạn \[A\]”;
\(B\): “Khách nghỉ tại khách sạn \[B\]”;
\(C\): “Khách nghỉ tại khách sạn \[C\]”.
Theo bài ra ta có: \(P\left( A \right) = 0,2\); \(P\left( B \right) = 0,5\); \(P\left( C \right) = 0,3\).
\(P\left( {H|A} \right) = 0,05\); \(P\left( {H|B} \right) = 0,04\); \(P\left( {H|C} \right) = 0,08\).
Áp dụng công thức xác suất toàn phần, ta có:
\[P\left( H \right)\, = \,P\left( A \right).P\left( {H|A} \right)\, + \,P\left( B \right).P\left( {H|B} \right)\, + \,P\left( C \right).P\left( {H|C} \right)\,\,\]
\[ = \,0,2.\,0,05\, + \,0,5.0,04\, + \,0,3.0,08\]\[ = \,0,054\].
Áp dụng công thức Bayes, xác suất để một khách ở khách sạn \(A\), biết khách đó ở phòng điều hòa bị hỏng là: \[P\left( {A|H} \right)\, = \,\frac{{P\left( A \right).P\left( {H|A} \right)}}{{P\left( H \right)}}\, = \,\frac{{0,2.0,05}}{{0,054}}\, = \,\frac{5}{{27}}\, \approx \,0,19\].
Áp dụng công thức Bayes, xác suất để một khách ở khách sạn \[C\], biết khách đó ở phòng điều hòa không bị hỏng là:
\[P\left( {C|\overline H } \right)\, = \,\frac{{P\left( C \right).P\left( {\overline H |C} \right)}}{{P\left( {\overline H } \right)}}\, = \,\frac{{0,3.\left( {1 - \,0,08} \right)}}{{1 - 0,054}}\, = \,\frac{{138}}{{473}}\, \approx \,0,29\].
Đáp án: 0,29.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Giả sử \(T\) là biến cố “ Gặp sinh viên thi trượt môn Toán”, có \(P\left( T \right) = 0,3\).
\(L\) là biến cố “Gặp sinh viên thi trượt môn Tâm lý”, có \(P\left( L \right) = 0,22\). Khi đó \(P\left( {L|T} \right) = 0,4\).
Sơ đồ hình cây:

a) Sai. Vì xác suất gặp sinh viên thi trượt cả môn Toán và Tâm Lý là:
\(P\left( {TL} \right) = P\left( T \right)P\left( {L|T} \right) = 0,3.0,4 = 0,12\).
b) Đúng. Xác suất gặp sinh viên đậu cả môn Toán và Tâm lý là
\(P\left( {\overline {TL} } \right) = 1 - P\left( {T \cup L} \right) = 1 - P\left( T \right) - P\left( L \right) + P\left( {TL} \right) = 1 - 0,3 - 0,22 + 0,12 = 0,6\).
c) Sai. Xác suất gặp sinh viên đậu môn Toán, biết rằng sinh viên này trượt môn Tâm lý là
\(P\left( {\overline T |L} \right) = \frac{{P\left( {\overline T L} \right)}}{{P\left( L \right)}} = \frac{{P\left( L \right) - P\left( {TL} \right)}}{{P\left( L \right)}} = \frac{{0,22 - 0,12}}{{0,22}} = 0,45\).
d) Đúng. Theo công thức tính xác suất toàn phần, xác suất gặp sinh viên đậu môn Tâm lý là
\(P\left( {\overline L } \right) = P\left( T \right).P\left( {\overline L |T} \right) + P\left( {\overline T } \right).P\left( {\overline L |\overline T } \right) = 0,3.0,6 + 0,7.0,78 = 0,726\).
Câu 2
Lời giải
Chọn A
Tập hợp các kết quả thuận lợi cho biến cố \(A\)là \(\left\{ {\left( {3;1} \right),\left( {3;2} \right),\left( {3;4} \right)} \right\}\).
Vậy \(n\left( A \right) = 3\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.