Câu hỏi:

07/10/2025 32 Lưu

Một công ty du lịch bố trí chỗ nghỉ cho đoàn khách tại ba khách sạn \[A,\,B,\,C\] theo tỉ lệ \[20\]%, \[50\]%, \[30\]%. Tỉ lệ hỏng điều hòa ở ba khách sạn lần lượt là \[5\]%, \[4\]%, \[8\]%. Tính xác suất để một khách ở khách sạn \[C\], biết khách đó ở phòng điều hòa không bị hỏng (kết quả để dưới dạng số thập phân và làm tròn đến hàng phần trăm).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi biến cố \[H\]: “Khách nghỉ ở phòng có điều hòa bị hỏng”;

\(A\): “Khách nghỉ tại khách sạn \[A\]”;

\(B\): “Khách nghỉ tại khách sạn \[B\]”;

\(C\): “Khách nghỉ tại khách sạn \[C\]”.

Theo bài ra ta có: \(P\left( A \right) = 0,2\); \(P\left( B \right) = 0,5\); \(P\left( C \right) = 0,3\).

\(P\left( {H|A} \right) = 0,05\); \(P\left( {H|B} \right) = 0,04\); \(P\left( {H|C} \right) = 0,08\).

Áp dụng công thức xác suất toàn phần, ta có:

\[P\left( H \right)\, = \,P\left( A \right).P\left( {H|A} \right)\, + \,P\left( B \right).P\left( {H|B} \right)\, + \,P\left( C \right).P\left( {H|C} \right)\,\,\]

\[ = \,0,2.\,0,05\, + \,0,5.0,04\, + \,0,3.0,08\]\[ = \,0,054\].

Áp dụng công thức Bayes, xác suất để một khách ở khách sạn \(A\), biết khách đó ở phòng điều hòa bị hỏng là: \[P\left( {A|H} \right)\, = \,\frac{{P\left( A \right).P\left( {H|A} \right)}}{{P\left( H \right)}}\, = \,\frac{{0,2.0,05}}{{0,054}}\, = \,\frac{5}{{27}}\, \approx \,0,19\].

Áp dụng công thức Bayes, xác suất để một khách ở khách sạn \[C\], biết khách đó ở phòng điều hòa không bị hỏng là:

\[P\left( {C|\overline H } \right)\, = \,\frac{{P\left( C \right).P\left( {\overline H |C} \right)}}{{P\left( {\overline H } \right)}}\, = \,\frac{{0,3.\left( {1 - \,0,08} \right)}}{{1 - 0,054}}\, = \,\frac{{138}}{{473}}\, \approx \,0,29\].

Đáp án: 0,29.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giả sử \(T\) là biến cố “ Gặp sinh viên thi trượt môn Toán”, có \(P\left( T \right) = 0,3\).

\(L\) là biến cố “Gặp sinh viên thi trượt môn Tâm lý”, có \(P\left( L \right) = 0,22\). Khi đó \(P\left( {L|T} \right) = 0,4\).

Sơ đồ hình cây:

Trong năm học vừa qua, ở trường đại học X, tỉ lệ sinh viên thi trượt môn Toán là \(30\% \ (ảnh 1)

a) Sai. Vì xác suất gặp sinh viên thi trượt cả môn Toán và Tâm Lý là:

\(P\left( {TL} \right) = P\left( T \right)P\left( {L|T} \right) = 0,3.0,4 = 0,12\).

b) Đúng. Xác suất gặp sinh viên đậu cả môn Toán và Tâm lý là

\(P\left( {\overline {TL} } \right) = 1 - P\left( {T \cup L} \right) = 1 - P\left( T \right) - P\left( L \right) + P\left( {TL} \right) = 1 - 0,3 - 0,22 + 0,12 = 0,6\).

c) Sai. Xác suất gặp sinh viên đậu môn Toán, biết rằng sinh viên này trượt môn Tâm lý là

\(P\left( {\overline T |L} \right) = \frac{{P\left( {\overline T L} \right)}}{{P\left( L \right)}} = \frac{{P\left( L \right) - P\left( {TL} \right)}}{{P\left( L \right)}} = \frac{{0,22 - 0,12}}{{0,22}} = 0,45\).

d) Đúng. Theo công thức tính xác suất toàn phần, xác suất gặp sinh viên đậu môn Tâm lý là

\(P\left( {\overline L } \right) = P\left( T \right).P\left( {\overline L |T} \right) + P\left( {\overline T } \right).P\left( {\overline L |\overline T } \right) = 0,3.0,6 + 0,7.0,78 = 0,726\).

Lời giải

Chọn A

Tập hợp các kết quả thuận lợi cho biến cố \(A\)là \(\left\{ {\left( {3;1} \right),\left( {3;2} \right),\left( {3;4} \right)} \right\}\).

Vậy \(n\left( A \right) = 3\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\frac{3}{{20}}\).      
B. \(\frac{4}{5}\).         
C. \(\frac{1}{5}\).                
D. \(\frac{3}{5}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[0,35\].                      
B. \[0,3\].                      
C. \[0,65\].                           
D. \[0,55\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP