Trường X có \(20\% \) học sinh tham gia câu lạc bộ thể thao, trong số học sinh đó có \(85\% \) học sinh biết chơi môn bóng bàn. Ngoài ra, có \(10\% \) số học sinh không tham gia câu lạc bộ thể thao cũng biết chơi môn bóng bàn. Chọn ngẫu nhiên \(1\) học sinh của trường. Giả sử học sinh đó biết chơi môn bóng bàn. Xác suất chọn được học sinh thuộc câu lạc bộ thể thao là \(\frac{a}{b}\)(với \[\frac{a}{b}\] là phân số tối giản). Tính \(a - b\).
Trường X có \(20\% \) học sinh tham gia câu lạc bộ thể thao, trong số học sinh đó có \(85\% \) học sinh biết chơi môn bóng bàn. Ngoài ra, có \(10\% \) số học sinh không tham gia câu lạc bộ thể thao cũng biết chơi môn bóng bàn. Chọn ngẫu nhiên \(1\) học sinh của trường. Giả sử học sinh đó biết chơi môn bóng bàn. Xác suất chọn được học sinh thuộc câu lạc bộ thể thao là \(\frac{a}{b}\)(với \[\frac{a}{b}\] là phân số tối giản). Tính \(a - b\).
Quảng cáo
Trả lời:
Xét các biến cố \(A\): “Chọn được học sinh thuộc câu lạc bộ thể thao”;
\(B\): “Chọn được học sinh biết chơi bóng bàn”.
Khi đó, \[P\left( A \right) = 0,2;\,\,P\left( {\overline A } \right) = 0,8;\,\,P\left( {B|A} \right) = 0,85;\,\,P\left( {B|\overline A } \right) = 0,1\].
Theo công thức xác suất toàn phần ta có:
\(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right) = 0,2.0,85 + 0,8.0,1 = 0,25\).
Theo công thức Bayes, xác suất chọn được học sinh thuộc câu lạc bộ thể thao, biết học sinh đó chơi được môn bóng bàn là:
\(P\left( {A|B} \right) = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( B \right)}} = \frac{{0,2.0,85}}{{0,25}} = \frac{{17}}{{25}}\) nên \(a = 17,\,b = 25 \Rightarrow a - b = - 8\).
Đáp án: −8.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Giả sử \(T\) là biến cố “ Gặp sinh viên thi trượt môn Toán”, có \(P\left( T \right) = 0,3\).
\(L\) là biến cố “Gặp sinh viên thi trượt môn Tâm lý”, có \(P\left( L \right) = 0,22\). Khi đó \(P\left( {L|T} \right) = 0,4\).
Sơ đồ hình cây:

a) Sai. Vì xác suất gặp sinh viên thi trượt cả môn Toán và Tâm Lý là:
\(P\left( {TL} \right) = P\left( T \right)P\left( {L|T} \right) = 0,3.0,4 = 0,12\).
b) Đúng. Xác suất gặp sinh viên đậu cả môn Toán và Tâm lý là
\(P\left( {\overline {TL} } \right) = 1 - P\left( {T \cup L} \right) = 1 - P\left( T \right) - P\left( L \right) + P\left( {TL} \right) = 1 - 0,3 - 0,22 + 0,12 = 0,6\).
c) Sai. Xác suất gặp sinh viên đậu môn Toán, biết rằng sinh viên này trượt môn Tâm lý là
\(P\left( {\overline T |L} \right) = \frac{{P\left( {\overline T L} \right)}}{{P\left( L \right)}} = \frac{{P\left( L \right) - P\left( {TL} \right)}}{{P\left( L \right)}} = \frac{{0,22 - 0,12}}{{0,22}} = 0,45\).
d) Đúng. Theo công thức tính xác suất toàn phần, xác suất gặp sinh viên đậu môn Tâm lý là
\(P\left( {\overline L } \right) = P\left( T \right).P\left( {\overline L |T} \right) + P\left( {\overline T } \right).P\left( {\overline L |\overline T } \right) = 0,3.0,6 + 0,7.0,78 = 0,726\).
Câu 2
Lời giải
Chọn A
Tập hợp các kết quả thuận lợi cho biến cố \(A\)là \(\left\{ {\left( {3;1} \right),\left( {3;2} \right),\left( {3;4} \right)} \right\}\).
Vậy \(n\left( A \right) = 3\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.