Một loại linh kiện do hai nhà máy số I và số II cùng sản xuất. Tỉ lệ phế phẩm của các nhà máy I và II lần lượt là \(4\% \) và \(3\% \). Trong một lô linh kiện để lẫn lộn \(80\) sản phẩm của nhà máy số I và 120 sản phẩm của nhà máy số II. Một khách hàng lấy ngẫu nhiên một linh kiện từ lô hàng đó. Giả sử linh kiện được lấy ra là linh kiện phế phẩm. Xác suất linh kiện đó do nhà máy nào sản xuất là cao hơn?
Một loại linh kiện do hai nhà máy số I và số II cùng sản xuất. Tỉ lệ phế phẩm của các nhà máy I và II lần lượt là \(4\% \) và \(3\% \). Trong một lô linh kiện để lẫn lộn \(80\) sản phẩm của nhà máy số I và 120 sản phẩm của nhà máy số II. Một khách hàng lấy ngẫu nhiên một linh kiện từ lô hàng đó. Giả sử linh kiện được lấy ra là linh kiện phế phẩm. Xác suất linh kiện đó do nhà máy nào sản xuất là cao hơn?
Quảng cáo
Trả lời:

Xét hai biến cố sau:
\(A\): “Linh kiện lấy ra do nhà máy I sản xuất”; \(B\): “Linh kiện lấy ra là phế phẩm”.
Trong lô linh kiện có tổng cộng \(80 + 120 = 200\) linh kiện nên \(P\left( A \right) = \frac{{80}}{{200}} = 0,4\);\(P\left( {\overline A } \right) = 0,6\).
Vì tỉ lệ phế phẩm của các nhà máy I và II lần lượt là \(4\% \) và \(3\% \) nên \(P\left( {B|A} \right) = 4\% = 0,04\).
Khi đó: \(P\left( {B|\overline A } \right) = 3\% = 0,03\).
Ta có sơ đồ cây:
Khi linh kiện lấy ra là phế phẩm thì xác suất linh kiện đó do nhà máy I sản xuất là \(P\left( {A|B} \right)\) và xác suất linh kiện đó do nhà máy II sản xuất là \(P\left( {\overline A |B} \right)\).
Áp dụng công thức Bayes, ta có:
\(P\left( {A|B} \right) = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right)}} = \frac{{0,4.0,04}}{{0,4.0,04 + 0,6.0,03}} \approx 47\% \).
Suy ra \(P\left( {\overline A |B} \right) = 1 - P\left( {A|B} \right) \approx 53\% \).
Vậy xác suất linh kiện đó do nhà máy II sản xuất là cao hơn.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn C
Ta có: \(P\left( {\bar B} \right) = 1 - P\left( B \right) = 1 - 0,6 = 0,4\).
Theo công thức xác suất toàn phần:
\(P\left( A \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\bar B} \right).P\left( {A|\bar B} \right) = 0,6.0,7 + 0,4.0,4 = 0,58\).
Lời giải
a) Gọi \(A\) là biến cố “Người mua bảo hiểm ô tô là đàn ông”, \(B\) là biến cố “Người mua bảo hiểm ô tô trên 40 tuổi”. Ta cần tính \[P\left( {B|A} \right)\].
Do có \(52\% \) người mua bảo hiểm ô tô là đàn ông nên \[P\left( A \right) = 0,52\].
Do có \(39\% \) số người mua bảo hiểm ô tô là đàn ông trên 40 tuổi nên \[P\left( {AB} \right) = 0,39\].
Vậy \[P\left( {B|A} \right) = \frac{{P\left( {AB} \right)}}{{P\left( A \right)}} = \frac{{0,39}}{{0,52}} = 0,75\].
b) Trong số những người đàn ông mua bảo hiểm ô tô thì có 75% người trên 40 tuổi.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.