Một công ty giống cây trồng đã thử nghiệm hai phương pháp chăm sóc khác nhau cho cây
hướng dương. Sau hai tuần, người ta thấy cây được chăm sóc theo cả hai phương pháp đều thấp hơn 50 cm.

(a) Khoảng biến thiên của chiều cao các cây được chăm sóc theo mỗi phương pháp \(A\) và \(B\) bằng nhau.
(b) Trung bình của chiều cao các cây được chăm sóc theo mỗi phương pháp \(A\) và \(B\) bằng nhau.
(c) Độ lệch chuẩn của chiều cao các cây được chăm sóc theo phương án \(A\)là \(12,65\)(cm).
(d) Dựa vào độ lệch chuẩn thì chiều cao của các loại cây được chăm sóc theo phương án \(B\)ít bị chênh lệch hơn so với phương án \(A\).
Câu hỏi trong đề: Bài tập ôn tập Toán 12 Cánh diều Chương 3 có đáp án !!
Quảng cáo
Trả lời:
a) Đúng. Khoảng biến thiên của chiều cao các cây được chăm sóc theo mỗi phương pháp \(A\) và \(B\) bằng nhau và cùng bằng 50.
b) Đúng. Ước tính số trung bình và độ lệch chuẩn của chiều cao các cây được chăm sóc theo mỗi phương pháp. Cỡ mẫu của hai mẫu số liệu thống kê là \(N = 40\). Ta có bảng tần số ghép nhóm về chiều cao của cây được chăm sóc theo phương pháp \(A\) như sau:

Chiều cao trung bình của các cây được chăm sóc theo phương án \(A\) là:
\(\overline {{x_A}} = \frac{{5.6 + 18.5 + 25.12 + 35.8 + 45.6}}{{40}} = 25\)
Ta có bảng tần số ghép nhóm về chiều cao của cây được chăm sóc theo phương pháp \(B\) như sau:

Chiều cao trung bình của các cây được chăm sóc theo phương án \(B\) là:
\(\overline {{x_B}} = \frac{{5.13 + 15.6 + 25.2 + 35.6 + 45.13}}{{40}} = 25\)cm.
c) Đúng. Độ lệch chuẩn của chiều cao các cây được chăm sóc theo phương án \(A\)là:
\({s_A} = \sqrt {\frac{{{5^2}.6 + {{15}^2}.8 + {{25}^2}.12 + {{35}^2}.8 + {{45}^2}.6}}{{40}} - {{25}^2}} \approx 12,65\).
d) Sai. Độ lệch chuẩn của chiều cao các cây được chăm sóc theo phương án \(B\)là:
\({s_B} = \sqrt {\frac{{{5^2}.13 + {{15}^2}.6 + {{25}^2}.2 + {{35}^2}.6 + {{45}^2}.13}}{{40}} - {{25}^2}} \approx 17,03\).
Ta thấy \({s_B} > {s_A}\) nên dựa vào độ lệch chuẩn thì chiều cao của các loại cây được chăm sóc theo phương án \(B\) bị chênh lệch nhiều hơn so với phương án \(A\).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
\[[7;9)\].
\([9;11)\).
\([11;13)\).
\([13;15)\).
Lời giải
Đáp án đúng: B
Bảng tần số ghép nhóm theo giá trị đại diện là:

Số trung bình: \(\bar x = \frac{{2.6 + 7.8 + 7.10 + 3.12 + 1.14}}{{20}} = 9,4\).
Lời giải
a) Đúng. Xét số liệu ở Hà Nội:
Khoảng biến thiên: \(R = 31,8 - 16,8 = 15\).
Số phần tử của mẫu là \(n = 12\).
Tần số tích lũy của các nhóm lần lượt là \(c{f_1} = 2,c{f_2} = 5,c{f_3} = 7,c{f_4} = 8,c{f_5} = 12\).
Ta có: \(\frac{n}{4} = \frac{{12}}{4} = 3\) mà \(2 < 3 < 5\) suy ra nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 3.
Xét nhóm 2 là nhóm \(\left[ {19,8;22,8} \right)\) có \(s = 19,8,h = 3,{n_2} = 3\) và nhóm 1 là nhóm \(\left[ {16,8;19,8} \right)\) có \(c{f_1} = 2\). Ta có tứ phân vị thứ nhất là: \({Q_1} = s + \left( {\frac{{3 - c{f_1}}}{{{n_2}}}} \right).h = 19,8 + \left( {\frac{{3 - 2}}{3}} \right).3 = 20,8\).
Ta có: \(\frac{{3n}}{4} = \frac{{3.12}}{4} = 9\) mà \(8 < 9 < 12\) suy ra nhóm 5 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 9.
Xét nhóm 5 là nhóm \(\left[ {28,8;31,8} \right)\) có \(t = 28,8,1 = 3,{n_5} = 4\) và nhóm 4 là nhóm \(\left[ {25,8;28,8} \right)\) có \(c{f_4} = 8\).
Ta có tứ phân vị thứ ba là: \({Q_3} = t + \left( {\frac{{9 - c{f_4}}}{{{n_5}}}} \right).l = 28,8 + \left( {\frac{{9 - 8}}{4}} \right).3 = 29,55\).
Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là: \({Q_3} - {Q_1} = 29,55 - 20,8 = 8,75\) .
b) Sai. Số trung bình cộng của mẫu số liệu ghép nhóm là:
\(\overline {{x_1}} = \frac{{2.18,3 + 3.21,3 + 2.24,3 + 27,3 + 4.30,3}}{{12}} = 24,8\).
Phương sai của mẫu số liệu ghép nhóm là:
\(\begin{array}{l}{s_1}^2 = \frac{1}{{12}}\left[ {2{{\left( {18,3 - 24,8} \right)}^2} + 3{{\left( {21,3 - 24,8} \right)}^2} + 2{{\left( {24,3 - 24,8} \right)}^2}} \right.\\\left. {\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + {{\left( {27,3 - 24,8} \right)}^2} + 4{{\left( {30,3 - 24,8} \right)}^2}} \right] = 20,75.\end{array}\)
Độ lệch chuẩn của mẫu số liệu ghép nhóm là: \({s_1} = \sqrt {{s_1}^2} = \sqrt {20,75} \approx 4,56\).
c) Sai. Xét số liệu ở Huế:
Khoảng biến thiên: \(R = 31,8 - 16,8 = 15\).
Số phần tử của mẫu là \(n = 12\).
Tần số tích lũy của các nhóm lần lượt là \(c{f_1} = 1,c{f_2} = 3,c{f_3} = 6,c{f_4} = 8,c{f_5} = 12\).
Ta có: \(\frac{n}{4} = \frac{{12}}{4} = 3\) suy ra nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 3. Xét nhóm 2 là nhóm \([19,8;22,8)\) có \(s = 19,8,\;h = 3,{n_2} = 2\) và nhóm 1 là nhóm \([16,8;19,8)\) có \(c{f_1} = 1\)
Ta có tứ phân vị thứ nhất là: \({Q_1} = s + \left( {\frac{{3 - c{f_1}}}{{{n_2}}}} \right).h = 19,8 + \left( {\frac{{3 - 1}}{2}} \right).3 = 22,8\).
Ta có: \(\frac{{3n}}{4} = \frac{{3.12}}{4} = 9\) mà \(8 < 9 < 12\) suy ra nhóm 5 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 9.
Xét nhóm 5 là nhóm \(\left[ {28,8;31,8} \right)\) có \(t = 28,8,l = 3,{n_5} = 4\) và nhóm 4 là nhóm \([25,8;28,8)\) có \(c{f_4} = 8\).
Ta có tứ phân vị thứ ba là: \({Q_3} = t + \left( {\frac{{9 - c{f_4}}}{{{n_5}}}} \right).l = 28,8 + \left( {\frac{{9 - 8}}{4}} \right).3 = 29,55\).
Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là: \({Q_3} - {Q_1} = 29,55 - 22,8 = 6,75\).
Số trung bình cộng của mẫu số liệu ghép nhóm là:
\(\overline {{x_2}} = \frac{{18,3 + 2.21,3 + 3.24,3 + 2.27,3 + 4.30,3}}{{12}} = 25,8\).
Phương sai của mẫu số liệu ghép nhóm là:
\[\begin{array}{l}s_2^2 = \frac{1}{{12}}\left[ {{{\left( {18,3 - 25,8} \right)}^2} + 3{{\left( {21,3 - 25,8} \right)}^2} + 3{{\left( {24,3 - 25,8} \right)}^2}} \right.\\\left. {\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + 2{{\left( {27,3 - 25,8} \right)}^2} + 4{{\left( {30,3 - 25,8} \right)}^2}} \right] = 15,75.\end{array}\]
d) Đúng. Độ lệch chuẩn của mẫu số liệu ghép nhóm là: \({s_2} = \sqrt {s_2^2} = \sqrt {15,75} \approx 3,97\).
Huế có nhiệt độ không khí trung bình tháng đồng đều hơn vì độ lệch chuẩn nhỏ hơn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
\([0;20)\).
\([20;40)\).
\([40;60)\).
[60; 80).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.






