Câu hỏi:

09/10/2025 127 Lưu

Kết quả \(40\) lần nhảy xa của hai vận động viên Dũng và Huy được lần lượt thống kê trong bảng bên dưới (đơn vị: mét).

index_html_14490a72e1a17fdd.png

(a) Số trung bình cộng của mẫu số liệu ghép nhóm biểu diễn kết quả 40 lần nhảy xa của vận động viên Dũng cho bởi Bảng 15 (làm tròn kết quả đến hàng phần trăm) là \(6,92\)m.

(b) Độ lệch chuẩn của mẫu số liệu ghép nhóm biểu diễn kết quả 40 lần nhảy xa của vận động viên Dũng cho bởi Bảng 15 (làm tròn kết quả đến hàng phần trăm) là \(0,26\)m.

(c) Phương sai của mẫu số liệu ghép nhóm biểu diễn kết quả 40 lần nhảy xa của vận động viên Huy cho bởi Bảng 16 (làm tròn kết quả đến hàng phần trăm) là \(0,16.\)

(d) Kết quả nhảy xa của vận động viên Dũng đồng đều hơn kết quả nhảy xa của vận động viên Huy.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng. Số trung bình cộng của mẫu số liệu ghép nhóm biểu diễn kết quả 40 lần nhảy xa của vận động viên Dũng là:

\({\bar x_D} = \frac{{3.6,34 + 7.6,58 + 5.6,82 + 20.7,06 + 5.7,30}}{{40}} = \frac{{276,88}}{{40}} \approx 6,92\)(m).

b) Đúng. Phương sai của mẫu số liệu ghép nhóm biểu diễn kết quả 40 lần nhảy xa của vận động viên Dũng (làm tròn kết quả đến hàng phần trăm) là:

\(\begin{array}{l}s_D^2 = \frac{1}{{40}}\left[ {3.{{\left( {6,34 - 6,92} \right)}^2} + 7.{{\left( {6,58 - 6,92} \right)}^2} + 5.{{\left( {6,82 - 6,92} \right)}^2}} \right.\\\left. { + \,20.{{\left( {7,06 - 6,92} \right)}^2} + 5.{{\left( {7,30 - 6,92} \right)}^2}} \right] = \frac{{2,9824}}{{40}} \approx 0,07.\end{array}\)

Độ lệch chuẩn của mẫu số liệu ghép nhóm trên là: \({s_D} \approx \sqrt {0,07} \approx 0,26\)(m)

c) Sai. Số trung bình cộng của mẫu số liệu ghép nhóm biểu diễn kết quả 40 lần nhảy xa của vận động viên Huy là:

\({\bar x_H} = \frac{{2.6,34 + 5.6,58 + 8.6,82 + 19.7,06 + 6.7,30}}{{40}} = \frac{{278,08}}{{40}} \approx 6,95\)(m).

Vậy phương sai của mẫu số liệu ghép nhóm biểu diễn kết quả 40 lần nhảy xa của vận động viên Huy (làm tròn kết quả đến hàng phần trăm) là:

\(s_H^2 = \frac{1}{{40}}\left[ {2.{{\left( {6,34 - 6,95} \right)}^2} + 5.{{\left( {6,58 - 6,95} \right)}^2}} \right. + 8.{\left( {6,82 - 6,95} \right)^2} + 19.{\left( {7,06 - 6,95} \right)^2}\)

\(\left. { + \,6.{{\left( {7,30 - 6,95} \right)}^2}} \right] = \frac{{2,5288}}{{40}} \approx 0,06\).

Độ lệch chuẩn của mẫu số liệu ghép nhóm trên là: \({s_H} \approx \sqrt {0,06} \approx 0,24\)(m).

d) Sai. Do \({s_H} \approx 0,24 < {s_D} \approx 0,26\) nên kết quả nhảy xa của vận động viên Huy đồng đều hơn kết quả nhảy xa của vận động viên Dũng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng: B

Bảng tần số ghép nhóm theo giá trị đại diện là:

index_html_85dbe11c9053c12a.png

Số trung bình: \(\bar x = \frac{{2.6 + 7.8 + 7.10 + 3.12 + 1.14}}{{20}} = 9,4\).

Lời giải

Đáp án đúng: B

Ta có cỡ mẫu là \[n = 5 + 9 + 12 + 10 + 6 = 42\].

Gọi \({x_1},{x_2}, \ldots ,{x_{42}}\) là thời gian tập thể dục trong ngày của 42 học sinh khối 12 và giả sử dãy này đã sắp xếp theo thứ tự tăng dần.

Khi đó tứ phân vị thứ nhất \({Q_1}\) là trung vị của dãy gồm 21 số liệu đầu nên \({Q_1} = {x_{11}}\). Do \({x_{11}}\) thuộc nhóm \[\left[ {20;40} \right)\]nên nhóm này chứa \[{Q_1}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP