Câu hỏi:

09/10/2025 54 Lưu

Biểu đồ dưới đây thống kê thời gian tập thể dục buổi sáng mỗi ngày trong tháng 9/2022 của bác Bình và bác An.

Biểu đồ dưới đây thống kê thời gian tập thể dục buổi sáng mỗi ngày trong tháng 9/2022 của bác Bình và bác An.

(a) Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian tập thể dục buổi sá (ảnh 1)

(a) Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian tập thể dục buổi sáng của bác Bình là \(25\) (phút).

(b) Khoảng tứ phân vị của mẫu số liệu ghép nhóm về thời gian tập thể dục buổi sáng của bác An là: \({\Delta _Q} = 2\).

(c) Tứ phân vị thứ ba của mẫu số liệu ghép nhóm về thời gian tập thể dục buổi sáng của bác Bình là: \({Q_3}^\prime = \frac{{455}}{{16}}\).

(d) Khoảng tứ phân vị của mẫu số liệu ghép nhóm về thời gian tập thể dục buổi sáng mỗi ngày của bác An lớn hơn bác Bình.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng. Ta có bảng sau

index_html_16d20f469578d5e6.png

b) Sai. Cỡ mẫu \(n = 30\).

Gọi \({x_1};{x_2}; \ldots ;{x_{30}}\) là mẫu số liệu gốc về thời gian tập thể dục buổi sáng mỗi ngày của bác An được xếp theo thứ tự không giảm.

Ta có: \({x_1};{x_2}; \ldots ;{x_{25}} \in [20;25);{x_{26}}; \ldots ;{x_{30}} \in [25;30)\).

Tứ phân vị thứ nhất của mẫu số liệu gốc là \({x_8} \in [20;25)\). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \({Q_1} = 20 + \frac{{\frac{{30}}{4}}}{{25}}\left( {25 - 20} \right) = \frac{{43}}{2}\).

Tứ phân vị thứ ba của mẫu số liệu gốc là \({x_{23}} \in [20;25)\). Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: \({Q_3} = 20 + \frac{{\frac{{3.30}}{4}}}{{25}}\left( {25 - 20} \right) = \frac{{49}}{2}\).

Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \({\Delta _Q} = {Q_3} - {Q_1} = 3\).

Gọi \({y_1};{y_2}; \ldots ;{y_{30}}\) là mẫu số liệu gốc về thời gian tập thể dục buổi sáng mỗi ngày của bác Bình được xếp theo thứ tự không giảm.

Ta có: \({y_1};{y_2}; \ldots ;{y_5} \in [15;20);{y_6}; \ldots ;{y_{17}} \in [20;25);{y_{18}}; \ldots ;{y_{25}} \in [25;30);{y_{26}};{y_{27}};{y_{28}} \in [30;35)\);

\({y_{29}};{y_{30}} \in [35;40)\).

Tứ phân vị thứ nhất của mẫu số liệu gốc là \({y_8} \in [20;25)\). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \({Q_1}^\prime = 20 + \frac{{\frac{{30}}{4}}}{{12}}\left( {25 - 20} \right) = \frac{{185}}{8}\).

c) Đúng. Tứ phân vị thứ ba của mẫu số liệu gốc là \({y_{23}} \in [25;30)\). Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: \({Q_3}^\prime = 25 + \frac{{\frac{{3.30}}{4} - \left( {5 + 12} \right)}}{8}\left( {30 - 25} \right) = \frac{{455}}{{16}}\).

d) Sai. Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm về thời gian tập thể dục buổi sáng mỗi ngày của bác Bình lớn hơn bác An.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng: B

Bảng tần số ghép nhóm theo giá trị đại diện là:

index_html_85dbe11c9053c12a.png

Số trung bình: \(\bar x = \frac{{2.6 + 7.8 + 7.10 + 3.12 + 1.14}}{{20}} = 9,4\).

Lời giải

a) Đúng. Xét số liệu ở Hà Nội:

Khoảng biến thiên: \(R = 31,8 - 16,8 = 15\).

Số phần tử của mẫu là \(n = 12\).

Tần số tích lũy của các nhóm lần lượt là \(c{f_1} = 2,c{f_2} = 5,c{f_3} = 7,c{f_4} = 8,c{f_5} = 12\).

Ta có: \(\frac{n}{4} = \frac{{12}}{4} = 3\) mà \(2 < 3 < 5\) suy ra nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 3.

Xét nhóm 2 là nhóm \(\left[ {19,8;22,8} \right)\) có \(s = 19,8,h = 3,{n_2} = 3\) và nhóm 1 là nhóm \(\left[ {16,8;19,8} \right)\) có \(c{f_1} = 2\). Ta có tứ phân vị thứ nhất là: \({Q_1} = s + \left( {\frac{{3 - c{f_1}}}{{{n_2}}}} \right).h = 19,8 + \left( {\frac{{3 - 2}}{3}} \right).3 = 20,8\).

Ta có: \(\frac{{3n}}{4} = \frac{{3.12}}{4} = 9\) mà \(8 < 9 < 12\) suy ra nhóm 5 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 9.

Xét nhóm 5 là nhóm \(\left[ {28,8;31,8} \right)\) có \(t = 28,8,1 = 3,{n_5} = 4\) và nhóm 4 là nhóm \(\left[ {25,8;28,8} \right)\) có \(c{f_4} = 8\).

Ta có tứ phân vị thứ ba là: \({Q_3} = t + \left( {\frac{{9 - c{f_4}}}{{{n_5}}}} \right).l = 28,8 + \left( {\frac{{9 - 8}}{4}} \right).3 = 29,55\).

Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là: \({Q_3} - {Q_1} = 29,55 - 20,8 = 8,75\) .

b) Sai. Số trung bình cộng của mẫu số liệu ghép nhóm là:

\(\overline {{x_1}} = \frac{{2.18,3 + 3.21,3 + 2.24,3 + 27,3 + 4.30,3}}{{12}} = 24,8\).

Phương sai của mẫu số liệu ghép nhóm là:

\(\begin{array}{l}{s_1}^2 = \frac{1}{{12}}\left[ {2{{\left( {18,3 - 24,8} \right)}^2} + 3{{\left( {21,3 - 24,8} \right)}^2} + 2{{\left( {24,3 - 24,8} \right)}^2}} \right.\\\left. {\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + {{\left( {27,3 - 24,8} \right)}^2} + 4{{\left( {30,3 - 24,8} \right)}^2}} \right] = 20,75.\end{array}\)

Độ lệch chuẩn của mẫu số liệu ghép nhóm là: \({s_1} = \sqrt {{s_1}^2} = \sqrt {20,75} \approx 4,56\).

c) Sai. Xét số liệu ở Huế:

Khoảng biến thiên: \(R = 31,8 - 16,8 = 15\).

Số phần tử của mẫu là \(n = 12\).

Tần số tích lũy của các nhóm lần lượt là \(c{f_1} = 1,c{f_2} = 3,c{f_3} = 6,c{f_4} = 8,c{f_5} = 12\).

Ta có: \(\frac{n}{4} = \frac{{12}}{4} = 3\) suy ra nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 3. Xét nhóm 2 là nhóm \([19,8;22,8)\) có \(s = 19,8,\;h = 3,{n_2} = 2\) và nhóm 1 là nhóm \([16,8;19,8)\) có \(c{f_1} = 1\)

Ta có tứ phân vị thứ nhất là: \({Q_1} = s + \left( {\frac{{3 - c{f_1}}}{{{n_2}}}} \right).h = 19,8 + \left( {\frac{{3 - 1}}{2}} \right).3 = 22,8\).

Ta có: \(\frac{{3n}}{4} = \frac{{3.12}}{4} = 9\) mà \(8 < 9 < 12\) suy ra nhóm 5 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 9.

Xét nhóm 5 là nhóm \(\left[ {28,8;31,8} \right)\) có \(t = 28,8,l = 3,{n_5} = 4\) và nhóm 4 là nhóm \([25,8;28,8)\) có \(c{f_4} = 8\).

Ta có tứ phân vị thứ ba là: \({Q_3} = t + \left( {\frac{{9 - c{f_4}}}{{{n_5}}}} \right).l = 28,8 + \left( {\frac{{9 - 8}}{4}} \right).3 = 29,55\).

Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là: \({Q_3} - {Q_1} = 29,55 - 22,8 = 6,75\).

Số trung bình cộng của mẫu số liệu ghép nhóm là:

\(\overline {{x_2}} = \frac{{18,3 + 2.21,3 + 3.24,3 + 2.27,3 + 4.30,3}}{{12}} = 25,8\).

Phương sai của mẫu số liệu ghép nhóm là:

\[\begin{array}{l}s_2^2 = \frac{1}{{12}}\left[ {{{\left( {18,3 - 25,8} \right)}^2} + 3{{\left( {21,3 - 25,8} \right)}^2} + 3{{\left( {24,3 - 25,8} \right)}^2}} \right.\\\left. {\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + 2{{\left( {27,3 - 25,8} \right)}^2} + 4{{\left( {30,3 - 25,8} \right)}^2}} \right] = 15,75.\end{array}\]

d) Đúng. Độ lệch chuẩn của mẫu số liệu ghép nhóm là: \({s_2} = \sqrt {s_2^2} = \sqrt {15,75} \approx 3,97\).

Huế có nhiệt độ không khí trung bình tháng đồng đều hơn vì độ lệch chuẩn nhỏ hơn.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP