Biểu đồ dưới đây thống kê thời gian tập thể dục buổi sáng mỗi ngày trong tháng 9/2022 của bác Bình và bác An.

(a) Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian tập thể dục buổi sáng của bác Bình là \(25\) (phút).
(b) Khoảng tứ phân vị của mẫu số liệu ghép nhóm về thời gian tập thể dục buổi sáng của bác An là: \({\Delta _Q} = 2\).
(c) Tứ phân vị thứ ba của mẫu số liệu ghép nhóm về thời gian tập thể dục buổi sáng của bác Bình là: \({Q_3}^\prime = \frac{{455}}{{16}}\).
(d) Khoảng tứ phân vị của mẫu số liệu ghép nhóm về thời gian tập thể dục buổi sáng mỗi ngày của bác An lớn hơn bác Bình.
Câu hỏi trong đề: Bài tập ôn tập Toán 12 Cánh diều Chương 3 có đáp án !!
Quảng cáo
Trả lời:

a) Đúng. Ta có bảng sau
b) Sai. Cỡ mẫu \(n = 30\).
Gọi \({x_1};{x_2}; \ldots ;{x_{30}}\) là mẫu số liệu gốc về thời gian tập thể dục buổi sáng mỗi ngày của bác An được xếp theo thứ tự không giảm.
Ta có: \({x_1};{x_2}; \ldots ;{x_{25}} \in [20;25);{x_{26}}; \ldots ;{x_{30}} \in [25;30)\).
Tứ phân vị thứ nhất của mẫu số liệu gốc là \({x_8} \in [20;25)\). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \({Q_1} = 20 + \frac{{\frac{{30}}{4}}}{{25}}\left( {25 - 20} \right) = \frac{{43}}{2}\).
Tứ phân vị thứ ba của mẫu số liệu gốc là \({x_{23}} \in [20;25)\). Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: \({Q_3} = 20 + \frac{{\frac{{3.30}}{4}}}{{25}}\left( {25 - 20} \right) = \frac{{49}}{2}\).
Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \({\Delta _Q} = {Q_3} - {Q_1} = 3\).
Gọi \({y_1};{y_2}; \ldots ;{y_{30}}\) là mẫu số liệu gốc về thời gian tập thể dục buổi sáng mỗi ngày của bác Bình được xếp theo thứ tự không giảm.
Ta có: \({y_1};{y_2}; \ldots ;{y_5} \in [15;20);{y_6}; \ldots ;{y_{17}} \in [20;25);{y_{18}}; \ldots ;{y_{25}} \in [25;30);{y_{26}};{y_{27}};{y_{28}} \in [30;35)\);
\({y_{29}};{y_{30}} \in [35;40)\).
Tứ phân vị thứ nhất của mẫu số liệu gốc là \({y_8} \in [20;25)\). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \({Q_1}^\prime = 20 + \frac{{\frac{{30}}{4}}}{{12}}\left( {25 - 20} \right) = \frac{{185}}{8}\).
c) Đúng. Tứ phân vị thứ ba của mẫu số liệu gốc là \({y_{23}} \in [25;30)\). Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: \({Q_3}^\prime = 25 + \frac{{\frac{{3.30}}{4} - \left( {5 + 12} \right)}}{8}\left( {30 - 25} \right) = \frac{{455}}{{16}}\).
d) Sai. Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm về thời gian tập thể dục buổi sáng mỗi ngày của bác Bình lớn hơn bác An.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Cỡ mẫu: \(n = 18\).
Số trung bình: \(\bar x = \frac{{2.7,3 + 4.7,5 + 7.7,7 + 5.7,9}}{{18}} \approx 7,67\).
Phương sai: \({s^2} = \frac{{2.7,{3^2} + 4.7,{5^2} + 7.7,{7^2} + 5.7,{9^2}}}{{18}} - 7,{67^2} \approx 0,04\).
Độ lệch chuẩn: \(s \approx \sqrt {0,04} \approx 0,19\).
Đáp án: 0,19.
Câu 2
\([15;16)\).
\([16;17)\).
\([17;18)\).
\([18;19)\).
Lời giải
Đáp án đúng: C
Ta có: \(\frac{{3.20}}{4} = 15\) và \(1 + 3 + 8 < 15 < 1 + 3 + 8 + 6\) tứ phân vị thứ ba thuộc nhóm \([17;18)\).
Câu 3
\([0;20)\).
\([20;40)\).
\([40;60)\).
[60; 80).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.