Người ta ghi lại tiền lãi (đơn vị: triệu đồng) của một số nhà đầu tư (với số tiền đầu tư như nhau), khi đầu tư vào hai lĩnh vực \(A,B\) cho kết quả như sau:

Người ta có thể dùng phương sai và độ lệch chuẩn để so sánh mức độ rủi ro đầu tư các lĩnh vực có giá trị trung bình tiền lãi gần bằng nhau. Lĩnh vực nào có phương sai, độ lệch chuẩn tiền lãi cao hơn thì được coi là có độ rủi ro lớn hơn. Theo quan điểm trên, độ rủi ro của cổ phiếu nào cao hơn?
Lĩnh vực\(A\) có độ rủi ro bằng lĩnh vực \(B\).
Lĩnh vực\(A\) có độ rủi ro cao hơn lĩnh vực \(B\).
Lĩnh vực \(A\) có độ rủi ro thấp hơn lĩnh vực \(B\).
Không so sánh được.
Câu hỏi trong đề: Đề kiểm tra Toán 12 Cánh diều Chương 3 có đáp án !!
Quảng cáo
Trả lời:
Đáp án đúng: C
Lĩnh vực \(A\)

Lĩnh vực \(B\)

Giá trị trung bình của hai lĩnh vực \(A\) và \(B\) lần lượt là
\[{\bar x_A} = \frac{1}{{25}}.\left( {2.7,5 + 5.12,5 + 8.17,5 + 6.22,5 + 4.27,5} \right) = 18,5{\rm{ }}\]
\[{\bar x_B} = \frac{1}{{25}}.\left( {8.7,5 + 4.12,5 + 2.17,5 + 5.22,5 + 6.27,5} \right) = 16,9{\rm{ }}\]
Về độ trung bình đầu tư vào lĩnh vực \(A\) lãi hơn lĩnh vực \(B\).
Độ lệch chuẩn của hai lĩnh vực \(A\) và \(B\) lần lượt là
\[{s_A} = \sqrt {\frac{1}{{25}}.\left( {2.7,{5^2} + 5.12,{5^2} + 8.17,{5^2} + 6.22,{5^2} + 4.27,{5^2}} \right) - 18,{5^2}} = 5,8\];
\({s_B} = \sqrt {\frac{1}{{25}}.\left( {8.7,{5^2} + 4.12,{5^2} + 2.17,{5^2} + 5.22,{5^2} + 6.27,{5^2}} \right) - 16,{9^2}} = 8,04.\)
Như vậy độ lệch chuẩn của mẫu số liệu thu tiền được hàng tháng khi đầu tư vào lĩnh vực \(B\) cao hơn lĩnh vực \(A\) nên đầu tư vào lĩnh vực \(B\) rủi ro hơn.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
\(598\).
\(597\).
\(2477,1\).
\(256,2\).
Lời giải
Đáp án đúng: A
Trung bình thời gian chơi thể thao trong một ngày của một học sinh là:
\(\overline x = \frac{{10.5 + 30.9 + 50.12 + 70.10 + 90.6}}{{42}} = \frac{{360}}{7} = 51,42857143\).
Phương sai của mẫu số liệu là:
\({S^2} = \frac{{{{5.10}^2} + {{9.30}^2} + {{12.50}^2} + {{10.70}^2} + {{6.90}^2}}}{{42}} - {\left( {\frac{{360}}{7}} \right)^2} = \frac{{29300}}{{49}} = 597,9591837 \approx 598\).
Phương sai của mẫu số liệu được làm tròn đến chữ số thập phân thứ nhất là \({S^2} \approx 598\).
Lời giải

a) Sai. Khoảng biến thiên của điểm thi của học sinh hai lớp 12A là \({R_A} = 10 - 6 = 4\).
Khoảng biến thiên của điểm thi của học sinh hai lớp 12B là \({R_B} = 10 - 5 = 5\).
Vì \({R_B} > {R_A}\) nên điểm thi khảo sát môn Toán của lớp 12B phân tán hơn của lớp 12A.
b) Sai. Điểm trung bình môn Toán trong kỳ khảo sát của lớp 12A là :
\({\overline x _A} = \frac{{2.6,5 + 6.7,5 + 12.8,5 + 10.9,5}}{{30}} = \frac{{17}}{2} = 8,5\).
Số điểm trung bình môn Toán trong kỳ khảo sát của lớp 12B là :
\({\overline x _B} = \frac{{2.5,5 + 12.6,5 + 10.7,5 + 5.8,5 + 1.9,5}}{{30}} = \frac{{36}}{5} = 7,2\).
Vì \({\bar x_A} > {\bar x_B}\) nên số điểm trung bình môn Toán trong kỳ kiểm tra đánh giá của lớp 12A lớn hơn của lớp 12B.
c) Đúng. Lớp A có ta có: \(\frac{n}{4} = 7,5\,\,;\,\,\frac{n}{2} = 15;\,\,\frac{{3n}}{4} = 22,5\).
.
d) Đúng. Lớp B có ta có: \(\frac{n}{4} = 7,5\,\,;\,\,\frac{n}{2} = 15;\,\,\frac{{3n}}{4} = 22,5\).
.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
\[0,4252\].
\[0,5268\].
\[0,5314\].
\[0,6214\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.






