Câu hỏi:

09/10/2025 9 Lưu

Thống kê điểm thi khảo sát đầu năm môn Toán của hai lớp 12A và 12B, ta thu được kết quả sau:

index_html_59593efabf5bd9a8.png

(a) Từ khoảng biến thiên của điểm thi của học sinh hai lớp 12A và 12B, điểm thi khảo sát môn Toán của lớp 12A phân tán hơn của lớp 12B.

(b) Số điểm trung bình môn Toán trong bài khảo sát đầu năm của lớp 12B lớn hơn của lớp 12A.

(c) Khoảng tứ phân của lớp 12A lớn hơn 1.

(d) Khoảng tứ phân vị của lớp 12A lớn hơn so với lớp 12B.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Picture 1

a) Sai. Khoảng biến thiên của điểm thi của học sinh hai lớp 12A là \({R_A} = 10 - 6 = 4\).

Khoảng biến thiên của điểm thi của học sinh hai lớp 12B là \({R_B} = 10 - 5 = 5\).

Vì \({R_B} > {R_A}\) nên điểm thi khảo sát môn Toán của lớp 12B phân tán hơn của lớp 12A.

b) Sai. Điểm trung bình môn Toán trong kỳ khảo sát của lớp 12A là :

\({\overline x _A} = \frac{{2.6,5 + 6.7,5 + 12.8,5 + 10.9,5}}{{30}} = \frac{{17}}{2} = 8,5\).

Số điểm trung bình môn Toán trong kỳ khảo sát của lớp 12B là :

\({\overline x _B} = \frac{{2.5,5 + 12.6,5 + 10.7,5 + 5.8,5 + 1.9,5}}{{30}} = \frac{{36}}{5} = 7,2\).

Vì \({\bar x_A} > {\bar x_B}\) nên số điểm trung bình môn Toán trong kỳ kiểm tra đánh giá của lớp 12A lớn hơn của lớp 12B.

c) Đúng. Lớp A có ta có: \(\frac{n}{4} = 7,5\,\,;\,\,\frac{n}{2} = 15;\,\,\frac{{3n}}{4} = 22,5\).

.

d) Đúng. Lớp B có ta có: \(\frac{n}{4} = 7,5\,\,;\,\,\frac{n}{2} = 15;\,\,\frac{{3n}}{4} = 22,5\).

.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng: D

Cỡ mẫu \(n = 20\). Gọi \({x_1};{x_2}; \ldots ;{x_{20}}\)là mẫu số liệu gốc về quãng đường đi bộ mỗi ngày của bác Hương trong 20 ngày được xếp theo thứ tự không giảm.

Ta có: \({x_1}; \ldots ;{x_3} \in [2,7;3,0);{x_4}; \ldots ;{x_9} \in [3,0;3,3);{x_{10}}; \ldots ;{x_{14}} \in [3,3;3,6)\)

\({x_{15}}; \ldots ;{x_{18}} \in [3,6;3,9){\rm{;}}\,\,\,\,\,\,\,\,\,\,\,\,{x_{19}};{x_{20}} \in [3,9;4,2).\)

Tứ phân vị thứ nhất của mẫu số liệu gốc là \(\frac{1}{2}\left( {{x_5} + {x_6}} \right) \in [3,0;3,3)\).

Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \({Q_1} = 3,0 + \frac{{\frac{{20}}{4} - 3}}{6}(3,3 - 3,0) = 3,1\).

Tứ phân vị thứ ba của mẫu số liệu gốc là \(\frac{1}{2}\left( {{x_{15}} + {x_{16}}} \right) \in \left[ {3,6;3,9} \right)\).

Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là:

\({Q_3} = 3,6 + \frac{{\frac{{3.20}}{4} - \left( {3 + 6 + 5} \right)}}{4}\left( {3,9 - 3,6} \right) = 3,675\).

Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \({\Delta _Q} = {Q_3} - {Q_1} = 0,575\).

Lời giải

Ta có bảng sau:

index_html_5d281b09e05e7ed9.png

Cỡ mẫu là \[n = 13 + 45 + 24 + 12 + 6 = 100.\]

Số trung bình của mẫu số liệu ghép nhóm là:

\[\overline x = \frac{{13.19,25 + 45.19,75 + 24.20,25 + 12.20,75 + 6.21,25}}{{100}} = 20,015\].

Phương sai của mẫu số liệu ghép nhóm là:

\[\begin{array}{l}{S^2} = \frac{1}{{100}}\left[ {13.{{\left( {19,25 - 20,015} \right)}^2} + 45.{{\left( {19,75 - 20,015} \right)}^2} + 24.{{\left( {20,25 - 20,015} \right)}^2}} \right.\\\left. {\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + 12.{{\left( {20,75 - 20,015} \right)}^2} + 6.{{\left( {21,25 - 20,015} \right)}^2}} \right] \approx 0,277.\end{array}\]

Suy ra \(a = 0;b = 2 \Rightarrow a + b = 2.\)

Đáp án: 2.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP