Thống kê điểm thi khảo sát đầu năm môn Toán của hai lớp 12A và 12B, ta thu được kết quả sau:

(a) Từ khoảng biến thiên của điểm thi của học sinh hai lớp 12A và 12B, điểm thi khảo sát môn Toán của lớp 12A phân tán hơn của lớp 12B.
(b) Số điểm trung bình môn Toán trong bài khảo sát đầu năm của lớp 12B lớn hơn của lớp 12A.
(c) Khoảng tứ phân của lớp 12A lớn hơn 1.
(d) Khoảng tứ phân vị của lớp 12A lớn hơn so với lớp 12B.
Câu hỏi trong đề: Đề kiểm tra Toán 12 Cánh diều Chương 3 có đáp án !!
Quảng cáo
Trả lời:

a) Sai. Khoảng biến thiên của điểm thi của học sinh hai lớp 12A là \({R_A} = 10 - 6 = 4\).
Khoảng biến thiên của điểm thi của học sinh hai lớp 12B là \({R_B} = 10 - 5 = 5\).
Vì \({R_B} > {R_A}\) nên điểm thi khảo sát môn Toán của lớp 12B phân tán hơn của lớp 12A.
b) Sai. Điểm trung bình môn Toán trong kỳ khảo sát của lớp 12A là :
\({\overline x _A} = \frac{{2.6,5 + 6.7,5 + 12.8,5 + 10.9,5}}{{30}} = \frac{{17}}{2} = 8,5\).
Số điểm trung bình môn Toán trong kỳ khảo sát của lớp 12B là :
\({\overline x _B} = \frac{{2.5,5 + 12.6,5 + 10.7,5 + 5.8,5 + 1.9,5}}{{30}} = \frac{{36}}{5} = 7,2\).
Vì \({\bar x_A} > {\bar x_B}\) nên số điểm trung bình môn Toán trong kỳ kiểm tra đánh giá của lớp 12A lớn hơn của lớp 12B.
c) Đúng. Lớp A có ta có: \(\frac{n}{4} = 7,5\,\,;\,\,\frac{n}{2} = 15;\,\,\frac{{3n}}{4} = 22,5\).
.
d) Đúng. Lớp B có ta có: \(\frac{n}{4} = 7,5\,\,;\,\,\frac{n}{2} = 15;\,\,\frac{{3n}}{4} = 22,5\).
.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
\(598\).
\(597\).
\(2477,1\).
\(256,2\).
Lời giải
Đáp án đúng: A
Trung bình thời gian chơi thể thao trong một ngày của một học sinh là:
\(\overline x = \frac{{10.5 + 30.9 + 50.12 + 70.10 + 90.6}}{{42}} = \frac{{360}}{7} = 51,42857143\).
Phương sai của mẫu số liệu là:
\({S^2} = \frac{{{{5.10}^2} + {{9.30}^2} + {{12.50}^2} + {{10.70}^2} + {{6.90}^2}}}{{42}} - {\left( {\frac{{360}}{7}} \right)^2} = \frac{{29300}}{{49}} = 597,9591837 \approx 598\).
Phương sai của mẫu số liệu được làm tròn đến chữ số thập phân thứ nhất là \({S^2} \approx 598\).
Lời giải
Bổ sung thêm các giá trị đại diện, ta lập được bảng sau:

Từ mẫu số liệu đã cho, ta tính được số trung bình là:
\(\bar x = \frac{{3.45 + 3.47 + 10.49 + 15.51 + 7.53 + 2.55}}{{40}} = \frac{{2012}}{{40}} = 50,3\).
\(\bar x\) không phải là số nguyên nên để tính phương sai ta tính:
\(\overline {{x^2}} = \frac{{{{3.45}^2} + {{3.47}^2} + {{10.49}^2} + {{15.51}^2} + {{7.53}^2} + {{2.55}^2}}}{{40}} = 2536.\)
Do đó \({s^2} = \overline {{x^2}} - {(\bar x)^2} = 2536 - 50,{3^2} = 2536 - 2530,09 = 5,91\).
Vậy mẫu số liệu về chiều dài của 40 trẻ sơ sinh có độ lệch chuẩn là \(s = \sqrt {5,91} \approx 2,43\).
Đáp án: 2,43.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lĩnh vực\(A\) có độ rủi ro bằng lĩnh vực \(B\).
Lĩnh vực\(A\) có độ rủi ro cao hơn lĩnh vực \(B\).
Lĩnh vực \(A\) có độ rủi ro thấp hơn lĩnh vực \(B\).
Không so sánh được.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
\[0,4252\].
\[0,5268\].
\[0,5314\].
\[0,6214\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.





