Câu hỏi:

09/10/2025 8 Lưu

Chiều dài của 40 bé trai sơ sinh 12 ngày tuổi chọn ngẫu nhiên ở một bệnh viện được nhà nghiên cứu thống kê trong bảng dưới đây:

index_html_5455a208c0f81fc.png

Tính độ lệch chuẩn của chiều dài nhóm 40 bé trai sơ sinh (làm tròn kết quả đến hàng phần trăm).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

2,43

Bổ sung thêm các giá trị đại diện, ta lập được bảng sau:

index_html_72d83caace5bf552.png

Từ mẫu số liệu đã cho, ta tính được số trung bình là:

\(\bar x = \frac{{3.45 + 3.47 + 10.49 + 15.51 + 7.53 + 2.55}}{{40}} = \frac{{2012}}{{40}} = 50,3\).

\(\bar x\) không phải là số nguyên nên để tính phương sai ta tính:

\(\overline {{x^2}} = \frac{{{{3.45}^2} + {{3.47}^2} + {{10.49}^2} + {{15.51}^2} + {{7.53}^2} + {{2.55}^2}}}{{40}} = 2536.\)

Do đó \({s^2} = \overline {{x^2}} - {(\bar x)^2} = 2536 - 50,{3^2} = 2536 - 2530,09 = 5,91\).

Vậy mẫu số liệu về chiều dài của 40 trẻ sơ sinh có độ lệch chuẩn là \(s = \sqrt {5,91} \approx 2,43\).

Đáp án: 2,43.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng: D

Cỡ mẫu \(n = 20\). Gọi \({x_1};{x_2}; \ldots ;{x_{20}}\)là mẫu số liệu gốc về quãng đường đi bộ mỗi ngày của bác Hương trong 20 ngày được xếp theo thứ tự không giảm.

Ta có: \({x_1}; \ldots ;{x_3} \in [2,7;3,0);{x_4}; \ldots ;{x_9} \in [3,0;3,3);{x_{10}}; \ldots ;{x_{14}} \in [3,3;3,6)\)

\({x_{15}}; \ldots ;{x_{18}} \in [3,6;3,9){\rm{;}}\,\,\,\,\,\,\,\,\,\,\,\,{x_{19}};{x_{20}} \in [3,9;4,2).\)

Tứ phân vị thứ nhất của mẫu số liệu gốc là \(\frac{1}{2}\left( {{x_5} + {x_6}} \right) \in [3,0;3,3)\).

Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \({Q_1} = 3,0 + \frac{{\frac{{20}}{4} - 3}}{6}(3,3 - 3,0) = 3,1\).

Tứ phân vị thứ ba của mẫu số liệu gốc là \(\frac{1}{2}\left( {{x_{15}} + {x_{16}}} \right) \in \left[ {3,6;3,9} \right)\).

Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là:

\({Q_3} = 3,6 + \frac{{\frac{{3.20}}{4} - \left( {3 + 6 + 5} \right)}}{4}\left( {3,9 - 3,6} \right) = 3,675\).

Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \({\Delta _Q} = {Q_3} - {Q_1} = 0,575\).

Lời giải

Picture 1

a) Sai. Khoảng biến thiên của điểm thi của học sinh hai lớp 12A là \({R_A} = 10 - 6 = 4\).

Khoảng biến thiên của điểm thi của học sinh hai lớp 12B là \({R_B} = 10 - 5 = 5\).

Vì \({R_B} > {R_A}\) nên điểm thi khảo sát môn Toán của lớp 12B phân tán hơn của lớp 12A.

b) Sai. Điểm trung bình môn Toán trong kỳ khảo sát của lớp 12A là :

\({\overline x _A} = \frac{{2.6,5 + 6.7,5 + 12.8,5 + 10.9,5}}{{30}} = \frac{{17}}{2} = 8,5\).

Số điểm trung bình môn Toán trong kỳ khảo sát của lớp 12B là :

\({\overline x _B} = \frac{{2.5,5 + 12.6,5 + 10.7,5 + 5.8,5 + 1.9,5}}{{30}} = \frac{{36}}{5} = 7,2\).

Vì \({\bar x_A} > {\bar x_B}\) nên số điểm trung bình môn Toán trong kỳ kiểm tra đánh giá của lớp 12A lớn hơn của lớp 12B.

c) Đúng. Lớp A có ta có: \(\frac{n}{4} = 7,5\,\,;\,\,\frac{n}{2} = 15;\,\,\frac{{3n}}{4} = 22,5\).

.

d) Đúng. Lớp B có ta có: \(\frac{n}{4} = 7,5\,\,;\,\,\frac{n}{2} = 15;\,\,\frac{{3n}}{4} = 22,5\).

.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP