Câu hỏi:

09/10/2025 95 Lưu

Trong một đợt dã ngoại, một trường học cần thuê xe chở 180 người và 8 tấn hàng. Nơi thuê xe có hai loại xe \(A\) và \(B\), trong đó xe \(A\) có 10 chiếc và xe \(B\) có 9 chiếc. Một xe loại \(A\) cho thuê với giá 5 triệu đồng và một xe loại \(B\) cho thuê với giá 4 triệu đồng. Biết rằng mỗi xe loại \(A\) có thể chở tối đa 30 người và 0,8 tấn hàng, mỗi xe loại \(B\) có thể chở tối đa 20 người và 1,6 tấn hàng. Tìm số xe mỗi loại sao cho chi phí thuê là thấp nhất.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \(x,y(xe)\) lần lượt là số xe loại \(A\) và \(B\) cần thuê.

Khi đó, số tiền cần bỏ ra để thuê xe là \(F(x;y) = 5x + 4y\) (triệu đồng)

Ta có \(x\) xe loại \(A\) chở được \(30x\) người và \(0,8x\) tấn hàng; \(y\) xe loại \(B\) chở được \(20y\) người và \(1,6y\) tấn hàng.

Suy ra \(x\) xe loại \(A\) và \(y\) xe loại \(B\) chở được \(30x + 20y\) người và \(0,8x + 1,6y\) tấn hàng.

Ta có hệ bất phương trình sau: \(\left\{ {\begin{array}{*{20}{l}}{30x + 20y \ge 180}\\{0,8x + 1,6y \ge 8}\\{0 \le x \le 10}\\{0 \le y \le 9}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{3x + 2y \ge 18}\\{x + 2y \ge 10}\\{0 \le x \le 10}\\{0 \le y \le 9}\end{array}} \right.} \right.\) (*)

Bài toán trở thành tìm giá trị nhỏ nhất của \(F(x;y)\) trên miền nghiệm của hệ (*).

Miền nghiệm của hệ \((*)\) là tứ giác \(ABCD\) (kể cả bờ)

Trong một đợt dã ngoại, một trường học cần thuê xe chở 180 người và 8 tấn hàng. Nơi thuê xe có hai loại xe A và B trong đó xe A có 10 chiếc và xe B có 9 chiếc. (ảnh 1)

Tìm tọa độ các điểm \(A,B,C,D\).

Tọa độ điểm \(A\) là nghiệm của hệ \(\left\{ {\begin{array}{*{20}{l}}{3x + 2y - 18 = 0}\\{y = 9}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = 0}\\{y = 9}\end{array}} \right.} \right.\). Vậy \(A(0;9)\).

Tọa độ điểm \(B\) là nghiệm của hệ \(\left\{ {\begin{array}{*{20}{l}}{3x + 2y - 18 = 0}\\{x + 2y - 10 = 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = 4}\\{y = 3}\end{array}} \right.} \right.\). Vậy \(B(4;3)\).

Tọa độ điểm \(C\) là nghiệm của hệ \(\left\{ {\begin{array}{*{20}{l}}{x = 10}\\{x + 2y - 10 = 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = 10}\\{y = 0}\end{array}} \right.} \right.\). Vậy \(C(10;0)\).

Tọa độ điểm \(D\) là nghiệm của hệ \(\left\{ {\begin{array}{*{20}{l}}{x = 10}\\{y = 9}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = 10}\\{y = 9}\end{array}} \right.} \right.\). Vậy \(D(10;9)\).

Ta thấy \(F(x;y) = 5x + 4y\) đạt giá trị nhỏ nhất chỉ có thể tại các điểm \(A,B,C,D\).

Tại \(A(0;9)\) thì \(F = 36\) (triệu đồng).

Tại \(B(4;3)\) thì \(F = 32\) (triệu đồng).

Tại \(C(10;0)\) thì \(F = 50\) (triệu đồng).

Tại \(D(10;9)\) thì \(F = 86\) (triệu đồng).

Như vậy để chi phí thấp nhất cần thuê 4 xe loại \(A\) và 3 xe loại \(B\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trong mặt phẳng \(Oxy\), cho tứ giác \(ABCD\) có \(A( - 3;0);B(0;2);C(3;1);D(3; - 2)\). Tìm tất cả các giá trị của \(m\) sao cho điểm \(M(m;m - 1)\) nằm trong hình tứ giác \(ABCD\) kể cả 4 cạnh.

Trong mặt phẳng Oxy, cho tứ giác ABCD có \(A( - 3;0);B(0;2);C(3;1);D(3; - 2)\). Tìm tất cả các giá trị của \(m\) sao cho điểm \(M(m;m - 1)\) nằm trong hình tứ giác \(ABCD\) kể cả 4 cạnh. (ảnh 1)

Nhận thấy hình tứ giác \(ABCD\) tính cả 4 cạnh của nó là miền nghiệm của hệ bất phương trình gồm 4 bất phương trình có miền nghiệm là nửa mặt phẳng chứa điểm \(O(0;0)\) và lần lượt có các bờ là các đường thẳng \(AB,BC,CD\) và \(DA\).

Phương trình đường thẳng \(AB\):

\(\frac{{x + 3}}{{0 - ( - 3)}} = \frac{{y - 0}}{{2 - 0}} \Leftrightarrow 2x - 3y + 6 = 0.{\rm{ }}\)

Bất phương trình có miền nghiệm là là nửa mặt phẳng bờ \(AB\) (tính cả bờ \(AB\)) và chứa điểm \(O\) là \(2x - 3y + 6 \ge 0\).

Phương trình đường thẳng \(BC:\frac{{x - 0}}{{3 - 0}} = \frac{{y - 2}}{{1 - 2}} \Leftrightarrow x + 3y - 6 = 0\). Bất phương trình có miền nghiệm là là nửa mặt phẳng bờ \(BC\) (tính cả bờ \(BC\)) và chứa điểm \(O\) là \(x + 3y - 6 \le 0\).

Phương trình đường thẳng \(CD:x - 3 = 0\). Bất phương trình có miền nghiệm là là nửa mặt phẳng bờ \(CD\) (tính cả bờ \(CD\)) và chứa điểm \(O\) là \(x - 3 \le 0\).

Phương trình đường thẳng \(DA:\frac{{x + 3}}{{3 - ( - 3)}} = \frac{{y - 0}}{{ - 2 - 0}} \Leftrightarrow x + 3y + 3 = 0\). Bất phương trình có miền nghiệm là là nửa mặt phẳng bờ \(DA\) (tính cả bờ \(DA\) ) và chứa điểm \(O\) là \(x + 3y + 3 \ge 0\).

Hình tứ giác \(ABCD\) tính cả 4 cạnh của nó là miền nghiệm của hệ bất phương trình \(\left\{ {\begin{array}{*{20}{l}}{2x - 3y + 6 \ge 0}\\{x + 3y - 6 \le 0}\\{x - 3 \le 0}\\{x + 3y + 3 \ge 0}\end{array}} \right.(1)\)

Điểm \(M(m;m - 1)\) nằm trong hình tứ giác \(ABCD\) tính cả 4 cạnh của nó khi và chỉ khi \((m;m - 1)\) là một nghiệm của hệ \((1)\), tức là

\(\left\{ {\begin{array}{*{20}{l}}{2m - 3(m - 1) + 6 \ge 0}\\{m + 3(m - 1) - 6 \le 0}\\{m - 3 \le 0}\\{m + 3(m - 1) + 3 \ge 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{m \le 9}\\{m \le \frac{9}{4}}\\{m \le 3}\\{m \ge 0}\end{array} \Leftrightarrow 0 \le m \le \frac{9}{4}} \right.} \right.\)

Vậy các giá trị của \(m\) thỏa mãn là \(0 \le m \le \frac{9}{4}\).

Lời giải

Tìm giá trị nhỏ nhất của biểu thức \(F = 3y - 2x\) trên miền xác định bởi hệ \(\left\{ {\begin{array}{*{20}{c}}{x - y \le 6}\\{x \ge 2}\\{x + y \le 4}\end{array}} \right.\). Vẽ đường thẳng \({d_1}:x - y - 6 = 0\) đi qua hai điểm \((0; - 6)\) và \((6;0)\).

Vẽ đường thẳng \({d_2}:x - 2 = 0\) đi qua hai điểm \((2;0)\) và \((2;2)\).

Vẽ đường thẳng \({d_3}:x + y - 4 = 0\) đi qua hai điểm \((0;4)\) và \((4;0)\).

Xét điểm \(M(3;0)\). Ta thấy tọa độ \(M\) thỏa mãn tất cả các bất phương trình trong hệ.

Do đó, miền nghiệm của hệ bất phương trình \(\left\{ {\begin{array}{*{20}{c}}{x - y \le 6}\\{x \ge 2}\\{x + y \le 4}\end{array}} \right.\) là miền không bị tô đậm (hình tam giác \(ABC\) bao gồm cả các cạnh \(AB,BC\) và \(AC\) trên hình vẽ).

Tìm giá trị nhỏ nhất của biểu thức \(F = 3y - 2x\) trên miền xác định bởi hệ \(\left\{ {\begin{array}{*{20}{l}}{x - y \le 6}\\{y - 2x \ge 2}\\{x + y \le 4}\end{array}} \right.\). (ảnh 1)

Tìm tọa độ các điểm \(A,B,C\).

Điểm \(A = {d_2} \cap {d_3}\) nên tọa độ điểm \(A\) là nghiệm của hệ \(\left\{ {\begin{array}{*{20}{l}}{x = 2}\\{x + y - 4 = 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = 2}\\{y = 2}\end{array}} \right.} \right.\). Vậy \(A(2;2)\).

Điểm \(B = {d_1} \cap {d_3}\) nên tọa độ điểm \(B\) là nghiệm của hệ \(\left\{ {\begin{array}{*{20}{l}}{x - y - 6 = 0}\\{x + y - 4 = 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = 5}\\{y =  - 1}\end{array}} \right.} \right.\). Vậy \(B(5; - 1)\)

Điểm \(C = {d_1} \cap {d_2}\) nên tọa độ điểm \(C\) là nghiệm của hệ \(\left\{ {\begin{array}{*{20}{l}}{x = 2}\\{x - y - 6 = 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = 2}\\{y =  - 4}\end{array}} \right.} \right.\). Vậy \(C(2; - 4)\).

Ta thấy \(F = 3y - 2x\) đạt giá trị nhỏ nhất chỉ có thể tại các điểm \(A,B,C\).

Tại \(A(2;2)\) thì \(F = 2\).

Tại \(B(5; - 1)\) thì \(F =  - 13\)

Tại \(C(2; - 4)\) thì \(F =  - 16\)

Vậy giá trị nhỏ nhất của biểu thức \(F = 3y - 2x\) trên miền xác định bởi hệ \(\left\{ {\begin{array}{*{20}{c}}{x - y \le 6}\\{x \ge 2}\\{x + y \le 4}\end{array}} \right.\) là -16 khi \(x = 2,y =  - 4\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Bà Lan được tư vấn bổ sung chế độ ăn kiêng đặc biệt bằng cách sử dụng hai loại thực phẩm khác nhau là \(X\) và \(Y\). Mỗi gói thực phẩm \(X\) chứa 20 đơn vị canxi, 20 đơn vị sắt và 10 đơn vị vitamin \(B\). Mỗi gói thực phẩm \(Y\) chứa 20 đơn vị canxi, 10 đơn vị sắt và 20 đơn vị vitamin \(B\). Yêu cầu hằng ngày tối thiểu trong chế độ ăn uống là 240 đơn vị canxi, 160 đơn vị sắt và 140 đơn vị vitamin \(B\). Mỗi ngày không được dùng quá 12 gói mỗi loại. Khi đó:

a) Hệ bất phương mô tả số gói thực phẩm \(X\) và thực phẩm \(Y\) mà bà Lan cần dùng mỗi ngày trong chế độ ăn kiêng để đáp ứng đủ nhu cầu cần thiết đối với canxi, sắt và vitamin \(B\)là \(\left\{ {\begin{array}{*{20}{l}}{x + y \ge 12}\\{2x + y \ge 16}\\{x + 2y \ge 14}\\{0 \le x \le 12}\\{0 \le y \le 12}\end{array}} \right.\)

b) Miền nghiệm của hệ bất phương mô tả số gói thực phẩm \(X\) và thực phẩm \(Y\) mà bà Lan cần dùng mỗi ngày trong chế độ ăn kiêng để đáp ứng đủ nhu cầu cần thiết đối với canxi, sắt và vitamin \(B\)là một ngũ giác

c) Biết 1 gói thực phẩm loại \(X\) giá 20000 đồng, 1 gói thực phẩm loại \(Y\) giá 25000 đồng. Bà Lan cần dùng 10 gói thực phẩm loại \(X\) và 2 gói thực phẩm loại \(Y\) để chi phí mua là ít nhất

d) Điểm \(\left( {10;8} \right)\) không thuộc miền nghiệm của hệ bất phương mô tả số gói thực phẩm \(X\) và thực phẩm \(Y\) mà bà Lan cần dùng mỗi ngày trong chế độ ăn kiêng để đáp ứng đủ nhu cầu cần thiết đối với canxi, sắt và vitamin \(B\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\left( {2;\,1} \right)\).                              
B. \(\left( {6;\,4} \right)\).           
C. \(\left( {0;\,0} \right)\).                         
D. \(\left( {1;\,2} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP