Câu hỏi:

10/10/2025 497 Lưu

Hình vẽ nào sau đây biểu diễn miền nghiệm của bất phương trình \(2x - 3y - 6 \le 0\)?

Hình vẽ nào sau đây biểu diễn miền nghiệm của bất phương trình 2x - 3y - 6>0? (ảnh 1)

A. H1      

B. H2                             
C. H3                           
D. H4

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn C

Đường thẳng \(2x - 3y - 6 = 0\) đi qua hai điểm \(\left( {0; - 2} \right),\left( {3;0} \right)\) nên loại đáp án H2 và H4.

Mặt khác \(O\left( {0;0} \right)\) không thỏa mãn \(2x - 3y - 6 \le 0\) nên chọn hình H3.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Do \(x > 0,\frac{x}{2} + \frac{y}{3} - 1 \le 0\) nên ta có \(\frac{y}{3} < 1 \Leftrightarrow y < 3\)

Do \(y\) nguyên dương nên \(y \in \{ 1;2\} \).

Với \(y = 1\), ta có \(\left\{ {\begin{array}{*{20}{l}}{\frac{x}{2} + \frac{1}{3} - 1 \le 0}\\{x > 0}\end{array} \Leftrightarrow 0 < x \le \frac{4}{3} \Leftrightarrow x = 1} \right.\).

Với \(y = 2\), ta có \(\left\{ {\begin{array}{*{20}{l}}{\frac{x}{2} + \frac{2}{3} - 1 \le 0}\\{x > 0}\end{array} \Leftrightarrow 0 < x \le \frac{2}{3} \Leftrightarrow x \in \emptyset } \right.\).

Vậy bất phương trình \(\frac{x}{2} + \frac{y}{3} - 1 \le 0\) có nghiệm nguyên dương là \((1;1)\).

Lời giải

Đường thẳng \(AB:\frac{{x - 0}}{{ - 1 - 0}} = \frac{{y - 3}}{{2 - 3}} \Leftrightarrow x - y + 3 = 0\).

Đường thẳng \(AC:\frac{{x - 0}}{{2 - 0}} = \frac{{y - 3}}{{1 - 3}} \Leftrightarrow x + y - 3 = 0\).

Đường thẳng \(BC:\frac{{x - 2}}{{2 - ( - 1)}} = \frac{{y - 1}}{{1 - 2}} \Leftrightarrow x + 3y - 5 = 0\).

Điều kiện cần và đủ để điểm \(M\) nằm bên trong tam giác \(ABC\) là điểm \(M\) cùng với mỗi đỉnh \(A,B,C\) lần lượt cùng phía với nhau đối với cạnh \(AB,AC,BC\)

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}\begin{array}{l}(1 \cdot 0 + 3 \cdot 3 - 5) \cdot (1 \cdot m + 3 \cdot \frac{{2m - 1}}{2} - 5) > 0\\(1 \cdot ( - 1) + 1 \cdot 2 - 3) \cdot (1 \cdot m + 1 \cdot \frac{{2m - 1}}{2} - 3) > 0\\(1.2 - 1.1 + 3) \cdot (1 \cdot m - 1 \cdot \frac{{2m - 1}}{2} + 3) > 0\end{array}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}\begin{array}{l}m > \frac{{13}}{8}\\m < \frac{7}{4}\\14 > 0(tm)\end{array}\end{array} \Leftrightarrow \frac{{13}}{8} < m < \frac{7}{4}} \right.} \right.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\left( { - 2\,;\,2} \right) \in S\).                              

B. \(\left( {2\,;\,2} \right) \in S\).                                    
C. \(\left( { - 2\,;\,4} \right) \in S\). 
D. \(\left( {1\,;\,3} \right) \in S\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(Q\left( {1\;;\;1} \right)\).                        
B. \(M\left( {1\;;\; - 2} \right)\).    
C. \(P\left( {2\;;\; - 2} \right)\).                         
D. \(N\left( {1\;;\;0} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP