Câu hỏi:

10/10/2025 39 Lưu

Cho tam giác ABC có \(A(0;3);B( - 1;2);C(2;1)\). Tìm điều kiện của tham số \(m\) để điểm \(M\left( {m;\frac{{2m - 1}}{2}} \right)\) nằm bên trong tam giác ABC?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đường thẳng \(AB:\frac{{x - 0}}{{ - 1 - 0}} = \frac{{y - 3}}{{2 - 3}} \Leftrightarrow x - y + 3 = 0\).

Đường thẳng \(AC:\frac{{x - 0}}{{2 - 0}} = \frac{{y - 3}}{{1 - 3}} \Leftrightarrow x + y - 3 = 0\).

Đường thẳng \(BC:\frac{{x - 2}}{{2 - ( - 1)}} = \frac{{y - 1}}{{1 - 2}} \Leftrightarrow x + 3y - 5 = 0\).

Điều kiện cần và đủ để điểm \(M\) nằm bên trong tam giác \(ABC\) là điểm \(M\) cùng với mỗi đỉnh \(A,B,C\) lần lượt cùng phía với nhau đối với cạnh \(AB,AC,BC\)

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}\begin{array}{l}(1 \cdot 0 + 3 \cdot 3 - 5) \cdot (1 \cdot m + 3 \cdot \frac{{2m - 1}}{2} - 5) > 0\\(1 \cdot ( - 1) + 1 \cdot 2 - 3) \cdot (1 \cdot m + 1 \cdot \frac{{2m - 1}}{2} - 3) > 0\\(1.2 - 1.1 + 3) \cdot (1 \cdot m - 1 \cdot \frac{{2m - 1}}{2} + 3) > 0\end{array}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}\begin{array}{l}m > \frac{{13}}{8}\\m < \frac{7}{4}\\14 > 0(tm)\end{array}\end{array} \Leftrightarrow \frac{{13}}{8} < m < \frac{7}{4}} \right.} \right.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Do \(x > 0,\frac{x}{2} + \frac{y}{3} - 1 \le 0\) nên ta có \(\frac{y}{3} < 1 \Leftrightarrow y < 3\)

Do \(y\) nguyên dương nên \(y \in \{ 1;2\} \).

Với \(y = 1\), ta có \(\left\{ {\begin{array}{*{20}{l}}{\frac{x}{2} + \frac{1}{3} - 1 \le 0}\\{x > 0}\end{array} \Leftrightarrow 0 < x \le \frac{4}{3} \Leftrightarrow x = 1} \right.\).

Với \(y = 2\), ta có \(\left\{ {\begin{array}{*{20}{l}}{\frac{x}{2} + \frac{2}{3} - 1 \le 0}\\{x > 0}\end{array} \Leftrightarrow 0 < x \le \frac{2}{3} \Leftrightarrow x \in \emptyset } \right.\).

Vậy bất phương trình \(\frac{x}{2} + \frac{y}{3} - 1 \le 0\) có nghiệm nguyên dương là \((1;1)\).

Lời giải

Cho các giá trị \[x,y\] thỏa mãn điều kiện \[\left\{ \begin{array}{l}x - y + 2 \ge 0\\2x - y - 1 \le 0\\3x - y - 2 \ge 0\end{array} \right.\]. Tìm giá trị lớn nhất của biểu thức \[T = 3x + 2y\]. (ảnh 1)

Miền nghiệm của hệ đã cho là miền trong tam giác \[ABC\](Kể cả đường biên) trong đó \[A\left( {1;1} \right)\], \[B\left( {2;4} \right)\],\[C\left( {3;5} \right)\].

Giá trị lớn nhất của \[T = 3x + 2y\] đạt được tại các đỉnh của tam giác \[ABC\].

Do \[{T_A} = T\left( {1;1} \right) = 3.1 + 2.1 = 5\], \[{T_B} = T\left( {2;4} \right) = 3.2 + 2.4 = 14\] và \[{T_C} = T\left( {3;5} \right) = 3.3 + 2.5 = 25\] nên giá trị lớn nhất của \[T = 3x + 2y\] là \[25\] đạt được khi \[x = 3\] và \[y = 5\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\left( {2\,;\,\,3} \right)\).                         
B. \(\left( { - 2\,;\,\,1} \right)\).        
C. \(\left( {2\,;\,\, - 1} \right)\).                         
D. \(\left( {0\,;\,\,0} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP