Câu hỏi:

10/10/2025 12 Lưu

Cho tam giác ABC có \[BC = 10\] và góc\[A = {30^0}\]. Bán kính \[R\] của đường tròn ngoại tiếp tam giác ABC bằng              

A. \[\frac{{10}}{{\sqrt 3 }}\].                  
B. \[5\].                           
C. \[10\sqrt 3 \].       
D. \[10\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn D

Áp dụng định lý sin trong tam giác \[ABC\] ta có 2R=BCsinA=10sin300=1012 R=10

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Vì \(ABCD\) là hình bình hành nên ta có: BC=AD=8,ABC^=180°60°=120°

Áp dụng định lí côsin cho tam giác \(ABC\), ta có: AC2=AB2+BC22ABBCcosABC^=52+82258cos120°=129 AC=129

Lời giải

Ta có: \({h_a} = \sqrt {p(p - a)}  \Leftrightarrow \frac{{2S}}{a} = \sqrt {p(p - a)} \)

\(\begin{array}{l} \Leftrightarrow \frac{{2\sqrt {p(p - a)(p - b)(p - c)} }}{a} = \sqrt {p(p - a)}  \Leftrightarrow 4(p - b)(p - c) = {a^2} \Leftrightarrow (a + c - b)(a + b - c) = {a^2}\\ \Leftrightarrow {a^2} - {(b - c)^2} = {a^2} \Leftrightarrow {(b - c)^2} = 0 \Leftrightarrow b = c.\end{array}\)

Vậy tam giác \(ABC\) cân tại \(A\).

Câu 3

A. \(\frac{{{h_a}}}{{{h_b}}} = \frac{1}{2}\).            
B. \(\frac{{{h_a}}}{{{h_b}}} = \frac{1}{{2\sqrt 2 }}\).                              
C. \(\frac{{{h_a}}}{{{h_b}}} = \sqrt 2 \).    
D. \(\frac{{{h_a}}}{{{h_b}}} = \frac{{\sqrt 2 }}{2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP