Câu hỏi:

13/10/2025 11 Lưu

Với giá trị nào của \[m\] thì bất phương trình \[m\left( {2x + 1} \right) < 8\] là bất phương trình bậc nhất một ẩn?

A. \[m \ne 1\].   

B. \[m \ne  - \frac{1}{3}\].
C. \[m \ne 0\].  
D. \[m \ne 8\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn C

Ta có \[m\left( {2x + 1} \right) < 8\] được biến đổi thành \[2mx + m - 8 < 0\].

Vậy để bất phương trình \[m\left( {2x + 1} \right) < 8\] là bất phương trình bậc nhất một ẩn thì \[2mx + m - 8 < 0\]là bất phương trình bậc nhất một ẩn.

Theo định nghĩa bất phương trình bậc nhất một ẩn thì \[a \ne 0\] hay \[2m \ne 0\] nên \[m \ne 0\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \({x^2} + {y^2} \ge 2\). 

B. \({x^2} + {y^2} \le 2\).   
C. \({x^2} + {y^2} \ge 2\).  
D. \({x^2} + {y^2} > 2\).

Lời giải

Chọn A

Từ \[x + y \ge 2\], bình phương hai vế (hai vế đều dương) được: \[{x^2} + 2xy + {y^2} \ge 4\].         \[\left( 1 \right)\]

Từ \[{\left( {x - y} \right)^2} \ge 0\] suy ra \[{x^2} - 2xy + {y^2} \ge 0\].       \[\left( 2 \right)\]

Cộng từng vế \[\left( 1 \right)\] với \[\left( 2 \right)\] được:\[2{x^2} + 2{y^2} \ge 4\].

Chia cả hai vế cho \(2\) ta được: \[{x^2} + {y^2} \ge 2\].

Dấu  xảy ra khi: \(\left\{ \begin{array}{l}x + y = 2\\{\left( {x - y} \right)^2} = 0\end{array} \right.\) hay \(\left\{ \begin{array}{l}x + y = 2\\x = y\end{array} \right.\) nên \(x = y = 1\).

Lời giải

Gọi \(x\) là số tờ tiền mệnh giá \[5{\rm{ }}000\] đồng nhiều nhất mà Hùng có \(\left( {x \in \mathbb{N}*} \right)\).

Số tờ tiền mệnh giá \[2{\rm{ }}000\] đồng Hùng có là: \(15 - x\) (tờ).

Giá trị của \(15 - x\) tờ tiền mệnh giá \[2{\rm{ }}000\] đồng là: \(2\,\,000\left( {15 - x} \right)\) (đồng).

Giá trị của \(x\) tờ tiền mệnh giá \[5{\rm{ }}000\] đồng là: \(5\,\,000x\) (đồng).

Tổng số tiền Hùng có là: \(2\,\,000\left( {15 - x} \right) + 5\,\,000x = 3\,\,000x + 30\,\,000\) (đồng).

Theo bài, Hùng có số tiền không vượt quá \[60{\rm{ }}000\] đồng nên ta có bất phương trình:

\(3\,\,000x + 30\,\,000 \le 60\,\,000\)

\(3\,\,000x \le 30\,\,000\)

\(x \le 10\).

Mà \(x \in \mathbb{N}*\) và \(x\) lớn nhất nên \(x = 10\).

Vậy Hùng có nhiều nhất là 10 tờ tiền mệnh giá \[5{\rm{ }}000\] đồng.

Đáp án: 10.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[a - 1 > 0\]. 

B. \[a - b < 0\].  
C. \[1 - b > 0\]. 
D. \[b - a < 0\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP