Câu hỏi:

13/10/2025 30 Lưu

Nghiệm của các bất phương trình \[{x^2} + 2(x - 3) - 1 > x\left( {x + 5} \right) + 5\] và \[\frac{2}{3} - \frac{{3x - 6}}{2} > \frac{{1 + 3x}}{6}\] lần lượt là

A. \[x >  - 4\,;\,\,x > \frac{7}{4}\].

B. \[x <  - 4\,;\,\,x < \frac{7}{4}\].  
C. \[x >  - 4\,;\,\,x < \frac{7}{4}\].  
D. \[x <  - 4\,;\,\,x > \frac{7}{4}\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn C

Giải lần lượt hai phương trình đã cho, ta được:

• \[{x^2} + 2\left( {x - 3} \right) - 1 > x\left( {x + 5} \right) + 5\]

\[{x^2} + 2x - 6 - 1 > {x^2} + 5x + 5\]

\[{x^2} + 2x - {x^2} - 5x > 5 + 6 + 1\]

\[ - 3x > 12\]

\[x <  - 4\].

Do đó, nghiệm của bất phương trình là \[x <  - 4\].

• \[\frac{2}{3} - \frac{{3x - 6}}{2} > \frac{{1 + 3x}}{6}\]

\[2.2 - 3(3x - 6) > 1 + 3x\]

\[4 - 9x + 18 > 1 + 3x\]

\[12x < 21\]

\[x < \frac{7}{4}\].

Do đó, nghiệm của bất phương trình là \[x < \frac{7}{4}\].

Vậy nghiệm của các bất phương trình \[{x^2} + 2\left( {x - 3} \right) - 1 > x\left( {x + 5} \right) + 5\] và \[\frac{2}{3} - \frac{{3x - 6}}{2} > \frac{{1 + 3x}}{6}\] lần lượt là \[x >  - 4\,;\,\,x < \frac{7}{4}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(x\) là số tờ tiền mệnh giá \[5{\rm{ }}000\] đồng nhiều nhất mà Hùng có \(\left( {x \in \mathbb{N}*} \right)\).

Số tờ tiền mệnh giá \[2{\rm{ }}000\] đồng Hùng có là: \(15 - x\) (tờ).

Giá trị của \(15 - x\) tờ tiền mệnh giá \[2{\rm{ }}000\] đồng là: \(2\,\,000\left( {15 - x} \right)\) (đồng).

Giá trị của \(x\) tờ tiền mệnh giá \[5{\rm{ }}000\] đồng là: \(5\,\,000x\) (đồng).

Tổng số tiền Hùng có là: \(2\,\,000\left( {15 - x} \right) + 5\,\,000x = 3\,\,000x + 30\,\,000\) (đồng).

Theo bài, Hùng có số tiền không vượt quá \[60{\rm{ }}000\] đồng nên ta có bất phương trình:

\(3\,\,000x + 30\,\,000 \le 60\,\,000\)

\(3\,\,000x \le 30\,\,000\)

\(x \le 10\).

Mà \(x \in \mathbb{N}*\) và \(x\) lớn nhất nên \(x = 10\).

Vậy Hùng có nhiều nhất là 10 tờ tiền mệnh giá \[5{\rm{ }}000\] đồng.

Đáp án: 10.

Lời giải

Gọi \(x\) (triệu đồng) là số tiền ông Kiên cần gửi tiết kiệm \[\left( {x > 0} \right)\].

Số tiền lãi ông Kiên thu được trong một năm là \(0,068 \cdot x\) (triệu đồng).

Để có lãi suất ít nhất là \(70\) triệu đồng một năm thì ta có:

\(0,068x \ge 70\) nên \(x \ge \frac{{70}}{{0,068}} \approx 1029,417...\).

So với điều kiện \[x > 0\] và số tiền ông Kiên cần gửi tiết kiệm ít nhất nên \(x = 1030\) triệu đồng.

Vậy ông Kiên cần gửi ngân hàng ít nhất là \(1030\) triệu đồng.

Đáp án: 1030.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP