Câu hỏi:

13/10/2025 19 Lưu

Một kì thi Tiếng Anh gồm bốn kĩ năng: nghe, nói, đọc, viết. Kết quả bài thi là điểm số trung bình của bốn kĩ năng này. Bạn Hà đã đạt được điểm số của ba kĩ năng nghe, đọc, viết lần lượt là \[6,5;\,\,6,5;\,\,5,5.\] Hỏi bạn Hà cần đạt được ít nhất bao nhiêu điểm trong kĩ năng nói để kết quả bài thi đạt được ít nhất là \[6,25?\]

A. \[6.\]   
B. \[6,25.\]
C. \[6,5.\]   
D. \[6,75.\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn C

Gọi \[x\] (điểm) là điểm kĩ năng nói trong bài thi Tiếng Anh của bạn Hà \[\left( {x > 0} \right)\].

Điểm trung bình của bốn kĩ năng nghe, nói, đọc, viết là:

\[\frac{{6,5 + x + 6,5 + 5,5}}{4} = \frac{{18,5 + x}}{4}\] (điểm).

Vì kết quả bài thi đạt ít nhất là \[6,25\] nên ta có bất phương trình \[\frac{{18,5 + x}}{4} \ge 6,25\]

Giải bất phương trình:

\[\frac{{18,5 + x}}{4} \ge 6,25\]

\[18,5 + x \ge 25\]

\[x \ge 6,5.\]

So với điều kiện \[x > 0,\] ta nhận \[x \ge 6,5.\]  

Vậy bạn Hà cần đạt được ít nhất \[6,5\] điểm trong kĩ năng nói để kết quả bài thi đạt được ít nhất là \[6,25.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \({x^2} + {y^2} \ge 2\). 

B. \({x^2} + {y^2} \le 2\).   
C. \({x^2} + {y^2} \ge 2\).  
D. \({x^2} + {y^2} > 2\).

Lời giải

Chọn A

Từ \[x + y \ge 2\], bình phương hai vế (hai vế đều dương) được: \[{x^2} + 2xy + {y^2} \ge 4\].         \[\left( 1 \right)\]

Từ \[{\left( {x - y} \right)^2} \ge 0\] suy ra \[{x^2} - 2xy + {y^2} \ge 0\].       \[\left( 2 \right)\]

Cộng từng vế \[\left( 1 \right)\] với \[\left( 2 \right)\] được:\[2{x^2} + 2{y^2} \ge 4\].

Chia cả hai vế cho \(2\) ta được: \[{x^2} + {y^2} \ge 2\].

Dấu  xảy ra khi: \(\left\{ \begin{array}{l}x + y = 2\\{\left( {x - y} \right)^2} = 0\end{array} \right.\) hay \(\left\{ \begin{array}{l}x + y = 2\\x = y\end{array} \right.\) nên \(x = y = 1\).

Lời giải

Gọi \(x\) là số tờ tiền mệnh giá \[5{\rm{ }}000\] đồng nhiều nhất mà Hùng có \(\left( {x \in \mathbb{N}*} \right)\).

Số tờ tiền mệnh giá \[2{\rm{ }}000\] đồng Hùng có là: \(15 - x\) (tờ).

Giá trị của \(15 - x\) tờ tiền mệnh giá \[2{\rm{ }}000\] đồng là: \(2\,\,000\left( {15 - x} \right)\) (đồng).

Giá trị của \(x\) tờ tiền mệnh giá \[5{\rm{ }}000\] đồng là: \(5\,\,000x\) (đồng).

Tổng số tiền Hùng có là: \(2\,\,000\left( {15 - x} \right) + 5\,\,000x = 3\,\,000x + 30\,\,000\) (đồng).

Theo bài, Hùng có số tiền không vượt quá \[60{\rm{ }}000\] đồng nên ta có bất phương trình:

\(3\,\,000x + 30\,\,000 \le 60\,\,000\)

\(3\,\,000x \le 30\,\,000\)

\(x \le 10\).

Mà \(x \in \mathbb{N}*\) và \(x\) lớn nhất nên \(x = 10\).

Vậy Hùng có nhiều nhất là 10 tờ tiền mệnh giá \[5{\rm{ }}000\] đồng.

Đáp án: 10.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[a - 1 > 0\]. 

B. \[a - b < 0\].  
C. \[1 - b > 0\]. 
D. \[b - a < 0\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP