Câu hỏi:

15/10/2025 11 Lưu

Một công ty xây dựng một hệ thống giám sát môi trường tại khu công nghiệp. Hai cảm biến không dây được đặt tại hai vị trí \(A,\,B\) trong không gian 3 chiều để thu thập dữ liệu không khí. Để đảm bảo tín hiệu truyền giữa hai cảm biến ổn định, công ty thiết kế một bóng bảo vệ tín hiệu hình cầu di động nhưng luôn đi qua cả hai cảm biến \(A\) và \(B\). Bóng này cần tiếp xúc với mặt đất để đảm bảo tính ổn định. Giả sử trong không gian với hệ toạ độ \(Oxyz\), toạ độ các điểm là \(A\left( {3;5; - 2} \right)\), \(B\left( { - 1;3;2} \right)\) và mặt đất được mô tả bằng mặt phẳng \(\left( P \right):2x + y - 2z + 9 = 0.\) Trong quá trình mô phỏng, điểm tiếp xúc giữa bóng bảo vệ và mặt đất (gọi là \(C\)) thay đổi. Kỹ sư cần xác định khoảng cách từ gốc tọa độ \(O\left( {0;0;0} \right)\) đến điểm tiếp xúc \(C\) để đánh giá mức độ ảnh hưởng từ vị trí đặt thiết bị. Gọi \({m_1}\) là giá trị lớn nhất và \({m_2}\) là giá trị nhỏ nhất của độ dài \(OC.\) Tính giá trị \({m_1}^2 + {m_2}^2.\)

Một công ty xây dựng một hệ thống giám sát môi trường tại khu công nghiệp. (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Một công ty xây dựng một hệ thống giám sát môi trường tại khu công nghiệp. (ảnh 1)
\(\left\{ \begin{array}{l}\overrightarrow {AB}  = \left( { - 4; - 2;4} \right) =  - 2\left( {2;1; - 2} \right)\\\overrightarrow {{n_P}}  = \left( {2;1; - 2} \right)\end{array} \right.\)\( \Rightarrow \overrightarrow {AB} ,\;\overrightarrow {{n_P}} \) cùng phương nên \(\overrightarrow {AB}  \bot \left( P \right)\), \(AB = 6\).

\(d\left( {A,\;\left( P \right)} \right) = \frac{{\left| {2.3 + 5 - 2.\left( { - 2} \right) + 9} \right|}}{{\sqrt {{2^2} + {1^2} + {{\left( { - 2} \right)}^2}} }} = 8\) và \(d\left( {B,\;\left( P \right)} \right) = \frac{{\left| {2.\left( { - 1} \right) + 3 - 2.2 + 9} \right|}}{{\sqrt {{2^2} + {1^2} + {{\left( { - 2} \right)}^2}} }} = 2\).

\(AB \cap \left( P \right) = M \Rightarrow M\) cố định.

Do \(\left( P \right)\) tiếp xúc với mặt cầu \(\left( S \right)\) tại \(C\) nên \(MC \bot IC\) tại \(C\).

\( \Rightarrow MA.MB = M{C^2}\), ta có: \(\left\{ \begin{array}{l}MA = d\left( {A;\;\left( P \right)} \right) = 8\\MB = d\left( {B;\left( P \right)} \right) = 2\end{array} \right. \Leftrightarrow M{C^2} = 16 \Leftrightarrow MC = 4\).

\( \Rightarrow C\) thuộc đường tròn tâm \(M\) bán kính \(r = MC = 4\).

Ta có: \(AB:\left\{ \begin{array}{l}x = 3 + 2t\\y = 5 + t\\z =  - 2 - 2t\end{array} \right.\), \(M = AB \cap \left( P \right) \Rightarrow M\left( { - \frac{7}{3};\frac{7}{3};\frac{{10}}{3}} \right)\).

Gọi \(H\) là hình chiếu của \(O\) lên mặt phẳng \(\left( P \right)\) \( \Rightarrow d\left( {O\left( P \right)} \right) = 3\), \(OH:\left\{ \begin{array}{l}x = 2t\\y = t\\z =  - 2t\end{array} \right.\).

\(H = OH \cap \left( P \right)\)\( \Leftrightarrow H\left( { - 2;\; - 1;\;2} \right)\), \(HM = \sqrt {13}  < 4\) nên \(H\) nằm trong đường tròn tâm \(M\) bán kính \(r = MC = 4\). Suy ra \(OC = \sqrt {O{H^2} + H{C^2}}  = \sqrt {9 + H{C^2}} \).

\( \Rightarrow OC\) đạt min hoặc max \( \Leftrightarrow HC\) đạt min hoặc max

\(\left\{ \begin{array}{l}H{C_{\min }} = \left| {HM - r} \right| = 4 - \sqrt {13} \\H{C_{\max }} = HM + r = 4 + \sqrt {13} \end{array} \right.\)\( \Rightarrow \left\{ \begin{array}{l}O{C_{\min }} = \sqrt {9 + \left( {4 - {{\sqrt {13} }^2}} \right)}  = {m_2}\\O{C_{\max }} = \sqrt {9 + {{\left( {4 + \sqrt {13} } \right)}^2}}  = {m_1}\end{array} \right.\).

Vậy \({m_1}^2 + {m_2}^2 = 76\).

Đáp án: 76.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(M\left( {a;b;c} \right)\). Khi đó ta có:

\({\left( {a + 1} \right)^2} + {\left( {b - 6} \right)^2} + {\left( {c - 3} \right)^2} = 36 \Leftrightarrow {a^2} + {b^2} + {c^2} + 2a - 12b - 6c + 10 = 0\)             \(\left( 1 \right)\)

\({\left( {a - 4} \right)^2} + {\left( {b - 8} \right)^2} + {\left( {c - 1} \right)^2} = 49 \Leftrightarrow {a^2} + {b^2} + {c^2} - 8a - 16b - 2c + 32 = 0\)          \(\left( 2 \right)\)

\({\left( {a - 9} \right)^2} + {\left( {b - 6} \right)^2} + {\left( {c - 7} \right)^2} = 144 \Leftrightarrow {a^2} + {b^2} + {c^2} - 18a - 12b - 14c + 22 = 0\)      \(\left( 3 \right)\)

\({\left( {a + 15} \right)^2} + {\left( {b - 18} \right)^2} + {\left( {c - 7} \right)^2} = 576 \Leftrightarrow {a^2} + {b^2} + {c^2} + 30a - 36b - 14c + 22 = 0\) \(\left( 4 \right)\)

Giải hệ gồm 4 phương trình trên ta được \(a = 1;b = 2;c =  - 1\) nên \(M\left( {1;2; - 1} \right)\).

Vậy \(T = 1 + 2 + \left( { - 1} \right) = 2\).

Đáp án: 2.

Lời giải

Phương trình tham số của đường cáp là: \[d:\left\{ \begin{array}{l}x =  - 2\\y = 1 - 2k\\z = 5 + 6k\end{array} \right.\begin{array}{*{20}{c}}{}&{\left( {k \in \mathbb{R}} \right)}\end{array}\]

Do tốc độ chuyển động của cabin là \(4\,{\rm{m/s}}\) nên độ dài \(AM = 4t\) \(\left( m \right)\).

Vì vậy sau \[5\] (s) kể từ lúc xuất phát, cabin đến điểm \[M\] thì \(AM = 4.5 = 20\) \(\left( m \right)\).

Vì \[M \in d \Rightarrow M\left( { - 2;1 - 2k;5 + 6k} \right)\].

\[\overrightarrow {AM}  = \left( {0; - 2k;6k} \right)\]. Do 2 vec tơ \[\overrightarrow {AM} ;\vec u\] cùng hướng \(k > 0\).

\(AM = 20 \Leftrightarrow \sqrt {{0^2} + 4{k^2} + 36{k^2}}  = 20 \Leftrightarrow 40{k^2} = 400 \Leftrightarrow k =  \pm \sqrt {10} \).

Vì \(k > 0 \Rightarrow k = \sqrt {10} \).

Vậy tọa độ \[M\left( { - 2;1 - 2\sqrt {10} ;5 + 6\sqrt {10} } \right)\]. Khi đó \[a + 3b + c =  - 2 + 3\left( {1 - 2\sqrt {10} } \right) + 5 + 6\sqrt {10}  = 6\].

Đáp án: 6.

Câu 3

A.

\({\left( {x - 2} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 1} \right)^2} = 8\).

B.

\({\left( {x - 2} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 1} \right)^2} = 2\).

C.

\({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 2} \right)^2} = 8\).

D.

\({\left( {x - 3} \right)^2} + {\left( {y - 1} \right)^2} + {z^2} = 2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A.

\({\left( {x - 1} \right)^2} + {y^2} + {\left( {z + 1} \right)^2} = 9\).

B.

\({\left( {x - 1} \right)^2} + {y^2} + {\left( {z + 1} \right)^2} = 3\).

C.

\({\left( {x + 1} \right)^2} + {y^2} + {\left( {z - 1} \right)^2} = 9\).

D.

\({\left( {x + 1} \right)^2} + {y^2} + {\left( {z - 1} \right)^2} = 3\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP