Trong không gian với hệ trục tọa độ \(Oxyz\), có hai trục \(Ox,\;Oy\) đặt trên mặt đất (coi mặt đất là một mặt phẳng); tia \(Oz\) hướng lên phía trên; đơn vị trên các trục tính bằng mét. Một thiết bị phát sóng \(M\)đặt tại điểm \(A\left( {80;60;60} \right)\). Vùng phủ sóng của thiết bị \(M\) có bán kính \(500\) mét. Gọi \(d\) là đường thẳng đi qua điểm \(B\left( {0; - 490;0} \right)\) và song song với trục \(Ox.\)
a) Một thiết bị thu sóng \(N\)(coi như một điểm) di chuyển trên trục \(Oy\)từ vị trí \(B\) theo hướng của vectơ \(\overrightarrow {BO} \). Thiết bị thu sóng \(N\)phải di chuyển một đoạn đường ngắn nhất bằng \[60,3\]mét thì vào được vùng phủ sóng của thiết bị \[M\].
b) Điểm \[B\] không thuộc vùng phủ sóng của thiết bị \[M\].
c) Một thiết bị thu sóng \(N\)(coi như một điểm) di chuyển trên đường thẳng \(d\) thì có thể vào được vùng phủ sóng của thiết bị \[M\].
d) Phương trình tham số của đường thẳng \(d\) là \[\left\{ \begin{array}{l}x = 0\\y = - 490\\z = t\end{array} \right.\left( {t \in \mathbb{R}} \right)\].
Quảng cáo
Trả lời:

a) Sai. Phương trình mặt cầu để mô tả ranh giới bên ngoài vùng phát sóng của thiết bị phát sóng \(M\) trong không gian là mặt cầu \(\left( S \right)\) có tâm \(A\left( {80;60;60} \right)\), bán kính \(500\) có phương trình\({\left( {x - 80} \right)^2} + {\left( {y - 60} \right)^2} + {\left( {z - 60} \right)^2} = {500^2}\).
Gọi \[E\left( {0;t;0} \right)\] là giao điểm của \(Oy\) và \(\left( S \right)\). Khi đó
\[{\left( { - 80} \right)^2} + {\left( {t - 60} \right)^2} + {60^2} = {500^2} \Leftrightarrow {\left( {t - 60} \right)^2} = 240000 \Leftrightarrow \left[ \begin{array}{l}{t_1} = 60 + 200\sqrt 6 \\{t_2} = 60 - 200\sqrt 6 \end{array} \right.\].
Ta có:
\[{t_1} = 60 + 200\sqrt 6 \Rightarrow {E_1}\left( {0;60 + 200\sqrt 6 ;0} \right) \Rightarrow {E_1}B = 550 + 200\sqrt 6 > 60,3\].
\[{t_2} = 60 - 200\sqrt 6 \Rightarrow {E_2}\left( {0;60 - 200\sqrt 6 ;0} \right) \Rightarrow {E_2}B = 550 - 200\sqrt 6 \approx 60,1\].
Thiết bị thu sóng \(N\)phải di chuyển một đoạn đường ngắn nhất bằng \[60,1\]mét thì vào được vùng phủ sóng của thiết bị \[M\].
b) Đúng. Ta có: \(\overrightarrow {AB} = \left( { - 80\,;\,550\,;\, - 60} \right) \Rightarrow AB = \sqrt {{{\left( { - 80} \right)}^2} + {{550}^2} + {{\left( { - 60} \right)}^2}} > 500 = R\).
Vậy điểm \[B\] nằm ngoài mặt cầu \(\left( S \right)\) nên điểm \[B\] không thuộc vùng phủ sóng của thiết bị \[M\].
c) Sai. Đường thẳng \[d\] đi qua điểm \(B\left( {0; - 490;0} \right)\) và song song với trục \(Ox\) có VTCP \[\overrightarrow i = \left( {1;0;0} \right)\] có PTTS là \[\left\{ \begin{array}{l}x = t\\y = - 490\\z = 0\end{array} \right.\left( {t \in \mathbb{R}} \right)\].
Suy ra: \(\left[ {\overrightarrow i ,\overrightarrow {AB} } \right] = \left( {0\,;\,60\,;\, - 550} \right)\).
Khoảng cách ngắn nhất từ \(A\left( {80;60;60} \right)\) đường thẳng \(d\) là:
\(d\left( {A;d} \right) = \frac{{\left| {\left[ {\overrightarrow i ,\overrightarrow {AB} } \right]} \right|}}{{\left| {\overrightarrow i } \right|}} = \frac{{\sqrt {{0^2} + {{60}^2} + {{\left( { - 550} \right)}^2}} }}{{\sqrt {{1^2} + {0^2} + {0^2}} }} > 500 = R\).
Vì vậy thiết bị thu sóng \(N\)(coi như một điểm) di chuyển trên đường thẳng \(d\) thì không thể vào được vùng phủ sóng của thiết bị \[M\].
d) Sai. Đường thẳng \[d\] đi qua điểm \(B\left( {0; - 490;0} \right)\) và song song với trục \(Ox\) có VTCP \[\overrightarrow i = \left( {1;0;0} \right)\] có PTTS là \[\left\{ \begin{array}{l}x = t\\y = - 490\\z = 0\end{array} \right.\left( {t \in \mathbb{R}} \right)\].
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(M\left( {a;b;c} \right)\). Khi đó ta có:
\({\left( {a + 1} \right)^2} + {\left( {b - 6} \right)^2} + {\left( {c - 3} \right)^2} = 36 \Leftrightarrow {a^2} + {b^2} + {c^2} + 2a - 12b - 6c + 10 = 0\) \(\left( 1 \right)\)
\({\left( {a - 4} \right)^2} + {\left( {b - 8} \right)^2} + {\left( {c - 1} \right)^2} = 49 \Leftrightarrow {a^2} + {b^2} + {c^2} - 8a - 16b - 2c + 32 = 0\) \(\left( 2 \right)\)
\({\left( {a - 9} \right)^2} + {\left( {b - 6} \right)^2} + {\left( {c - 7} \right)^2} = 144 \Leftrightarrow {a^2} + {b^2} + {c^2} - 18a - 12b - 14c + 22 = 0\) \(\left( 3 \right)\)
\({\left( {a + 15} \right)^2} + {\left( {b - 18} \right)^2} + {\left( {c - 7} \right)^2} = 576 \Leftrightarrow {a^2} + {b^2} + {c^2} + 30a - 36b - 14c + 22 = 0\) \(\left( 4 \right)\)
Giải hệ gồm 4 phương trình trên ta được \(a = 1;b = 2;c = - 1\) nên \(M\left( {1;2; - 1} \right)\).
Vậy \(T = 1 + 2 + \left( { - 1} \right) = 2\).
Đáp án: 2.
Câu 2
\({\left( {x - 2} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 1} \right)^2} = 8\).
\({\left( {x - 2} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 1} \right)^2} = 2\).
\({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 2} \right)^2} = 8\).
\({\left( {x - 3} \right)^2} + {\left( {y - 1} \right)^2} + {z^2} = 2\).
Lời giải
Chọn đáp án B
Mặt cầu có tâm \(I\left( {2\,;\,1\,;\,1} \right)\). Mặt cầu có bán kính \(R = AI = \sqrt 2 \).
Vậy mặt cầu có phương trình: \({\left( {x - 2} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 1} \right)^2} = 2\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
\({\left( {x - 1} \right)^2} + {y^2} + {\left( {z + 1} \right)^2} = 9\).
\({\left( {x - 1} \right)^2} + {y^2} + {\left( {z + 1} \right)^2} = 3\).
\({\left( {x + 1} \right)^2} + {y^2} + {\left( {z - 1} \right)^2} = 9\).
\({\left( {x + 1} \right)^2} + {y^2} + {\left( {z - 1} \right)^2} = 3\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.