Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình bình hành tâm \[O\]. Gọi \[M,\,N\] lần lượt thuộc cạnh \[SB,\,SC\] sao cho \[SM = \frac{1}{2}SB,\,SN = \frac{1}{2}SC\].
a) Chứng minh \[MN\] song song với \[BC\].
b) Gọi \[\left( \alpha \right)\] là mặt phẳng chứa \[DM\] và song song với \[AC\], cắt \[BC,\,SC\] lần lượt tại \[P,\,K\]. Chứng minh \[K\] là trọng tâm tam giác \[SBP\].
Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình bình hành tâm \[O\]. Gọi \[M,\,N\] lần lượt thuộc cạnh \[SB,\,SC\] sao cho \[SM = \frac{1}{2}SB,\,SN = \frac{1}{2}SC\].
a) Chứng minh \[MN\] song song với \[BC\].
b) Gọi \[\left( \alpha \right)\] là mặt phẳng chứa \[DM\] và song song với \[AC\], cắt \[BC,\,SC\] lần lượt tại \[P,\,K\]. Chứng minh \[K\] là trọng tâm tam giác \[SBP\].
Quảng cáo
Trả lời:
![Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/10/8-1760713197.png)
a) Trong tam giác \(SBC\) có \[\frac{{SM}}{{SB}} = \frac{{SN}}{{SC}} = \frac{1}{2}\]\[ \Rightarrow MN{\rm{//}}BC\].
b) Xét \[\left( \alpha \right)\] và \[\left( {ABCD} \right)\] có \[D\] chung, \[AC\] nằm trong \[\left( {ABCD} \right)\] và \[AC{\rm{//}}\left( \alpha \right)\] nên giao tuyến của 2 mặt phẳng \[\left( \alpha \right)\] và \[\left( {ABCD} \right)\] là đường thẳng qua \[D\] và song song với \[AC\], cắt \[BC\] tại \[P\].
Tứ giác \[ACPD\] là hình bình hành nên \[CP = AD = BC\]. Do đó \(C\) là trung điểm của \(BP\).
Vì \[M,P,K\] đều là điểm chung của \[\left( \alpha \right)\] và \[\left( {SBC} \right)\] nên \[M,P,K\] thẳng hàng.
Tam giác \[SBP\] có 2 trung tuyến \[SC,\,MP\] nên \[K\] là trọng tâm tam giác \[SBP\].
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Giá trị xe của ông An còn lại sau 16 năm:
\(1,2 \cdot {10^9} \cdot {\left( {1 - 8\% } \right)^{10}}{\left( {1 - 20\% } \right)^6} \approx 136\,647\,000\) (đồng).
b) Tổng số tiền ông An mua bảo hiểm xe trong suốt 16 năm đầu: \(S = {S_{10}} + {S'_6}\)
Với \({S_{10}}\) là tổng 10 số hạng đầu của cấp số nhân với \({u_1} = 1,2 \cdot {10^9} \cdot 1,55\% \), \(q = 1 - 8\% = 0,92\).
Với \({S'_6}\) là tổng 6 số hạng đầu của cấp số nhân với \({u'_1} = 1,2 \cdot {10^9} \cdot {\left( {1 - 8\% } \right)^{10}} \cdot 1,55\% \), \(q' = 1 - 20\% = 0,8\).
Ta tính được \({S_{10}} = 131\,\,504\,684,4\); \({S'_6} = 29\,807\,999,84\).
Khi đó, \(S = {S_{10}} + {S'_6} = 161\,312\,684,2 \approx 161\,313\,000\) (đồng).
Vậy, tổng số tiền ông An mua bảo hiểm xe trong suốt 16 năm đầu là \(161\,313\,000\) đồng.
Lời giải
a) Đúng. Phương trình có nghĩa khi \(1 + \sin 3x \ne 0 \Leftrightarrow \sin 3x \ne - 1\).
b) Đúng. Với điều kiện phương trình có nghĩa: \[\frac{{\cos 3x}}{{1 + \sin 3x}} = 0 \Leftrightarrow \cos 3x = 0\].
c) Đúng. Với \(x = \frac{{5\pi }}{6}\), ta có \[\frac{{\cos \left( {3 \cdot \frac{{5\pi }}{6}} \right)}}{{1 + \sin \left( {3 \cdot \frac{{5\pi }}{6}} \right)}} = \frac{0}{2} = 0\]. Vậy \(x = \frac{{5\pi }}{6}\) là một nghiệm của phương trình đã cho.
d) Sai. Với điều kiện: \(\sin 3x \ne - 1\), ta có \[\frac{{\cos 3x}}{{1 + \sin 3x}} = 0 \Leftrightarrow \cos 3x = 0\].
Vì \({\sin ^2}3x + {\cos ^2}3x = 1\) nên \(\cos 3x = 0 \Rightarrow {\sin ^2}3x = 1\)\( \Leftrightarrow \left[ \begin{array}{l}\sin 3x = 1\\\sin 3x = - 1\end{array} \right.\).
Kết hợp điều kiện \(\sin 3x \ne - 1\), ta được \(\sin 3x = 1\)\( \Leftrightarrow 3x = \frac{\pi }{2} + k2\pi \Leftrightarrow x = \frac{\pi }{6} + k\frac{{2\pi }}{3}\).
Theo giả thiết ta có \(x > 0 \Leftrightarrow \frac{\pi }{6} + k\frac{{2\pi }}{3} > 0\)\( \Leftrightarrow k > - \frac{1}{4}\). Do \(k \in \mathbb{Z}\) nên \({k_{\min }} = 0\).
Khi đó nghiệm dương nhỏ nhất của phương trình đã cho là \(x = \frac{\pi }{6}\).
\( \Rightarrow a = 1;b = 6 \Rightarrow {a^2} + 2b = 13\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \(AB\) và \(CD\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.