Bộ 5 đề thi Cuối kì 1 Toán 11 Cánh diều cấu trúc mới (có tự luận) có đáp án - Đề 1
65 người thi tuần này 4.6 250 lượt thi 21 câu hỏi 45 phút
🔥 Đề thi HOT:
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
Bài tập Giới hạn cơ bản, nâng cao có lời giải (P1)
12 câu Trắc nghiệm Toán 11 Kết nối tri thức Giá trị lượng giác của góc lượng giác có đáp án
Bài tập Lượng giác lớp 11 cơ bản, nâng cao có lời giải (P1)
Bộ 19 đề thi Giữa kì 1 Toán 11 Kết nối tri thức có đáp án - Đề 1
20 câu trắc nghiệm Toán 11 Kết nối tri thức Mẫu số liệu ghép nhóm có đáp án
Bộ 5 đề thi giữa kì 1 Toán 11 Kết nối tri thức cấu trúc mới có đáp án - Đề 1
160 Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P4)
Nội dung liên quan:
Danh sách câu hỏi:
Câu 1
Lời giải
Có \( - \pi < - \frac{{5\pi }}{4} < - \frac{{3\pi }}{2}\) nên \(\sin \alpha > 0;\cos \alpha < 0;\tan \alpha < 0;\cot \alpha < 0\). Chọn B.
Câu 2
Lời giải
\(\sin 2\alpha = 2\sin \alpha .\cos \alpha \). Chọn B.
Câu 3
Lời giải
Xét dãy số \({u_n} = 2n + 1\).
Ta có \({u_{n + 1}} - {u_n} = 2n + 3 - \left( {2n + 1} \right) = 2 > 0\).
Do đó dãy \({u_n} = 2n + 1\) là dãy tăng. Chọn B.
Câu 4
A. \(1; - 1;1; - 1\).
Lời giải
Lời giải
\(\lim \left( {{u_n} + {v_n}} \right) = \lim {u_n} + \lim {v_n} = - 2 + 3 = 1\). Chọn B.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 8
C. Tồn tại một mặt phẳng chứa \(AC\) và \(BD\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 9
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 10
Trong không gian cho ba mặt phẳng phân biệt \(\left( P \right),\left( Q \right)\) và \(\left( R \right)\). Xét các mệnh đề sau
(I) Nếu mặt phẳng (P) chứa một đường thẳng song song với (Q) thì (P) song song với (Q).
(II) Nếu mặt phẳng (P) chứa hai đường thẳng song song với (Q) thì (P) song song với (Q).
(III) Nếu hai mặt phẳng (P) và (Q) song song với (R) thì (P) song song với (Q).
(IV) Nếu hai mặt phẳng (P) và (Q) cắt (R) thì (P) song song với (Q).
Số mệnh đề đúng là
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 11
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 12
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 14
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành có tâm là \(O\).
a) Điểm \(O\) không thuộc mặt phẳng \(\left( {SBD} \right)\).
b) \(SA\) và \(BD\) là hai đường thẳng chéo nhau.
c) Giao tuyến của hai mặt phẳng \(\left( {SAD} \right)\) và \(\left( {SBC} \right)\) là đường thẳng đi qua \(S\) và song song với \(AD\).
d) Gọi \(I\) là trung điểm của SB. Khi đó \(OI//\left( {SCD} \right)\).
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành có tâm là \(O\).
a) Điểm \(O\) không thuộc mặt phẳng \(\left( {SBD} \right)\).
b) \(SA\) và \(BD\) là hai đường thẳng chéo nhau.
c) Giao tuyến của hai mặt phẳng \(\left( {SAD} \right)\) và \(\left( {SBC} \right)\) là đường thẳng đi qua \(S\) và song song với \(AD\).
d) Gọi \(I\) là trung điểm của SB. Khi đó \(OI//\left( {SCD} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

