Đề kiểm tra Toán 11 Cánh diều Chương 6 có đáp án - Đề 01
46 người thi tuần này 4.6 96 lượt thi 11 câu hỏi 60 phút
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
Bộ 10 đề thi Cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 10
Bộ 10 đề thi Cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 8
Bộ 10 đề thi Cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 7
Bộ 10 đề thi Cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 6
Bộ 10 đề thi Cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 5
Bộ 10 đề thi Cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 4
Bộ 10 đề thi cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 2
Bộ 10 đề thi cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 1
Danh sách câu hỏi:
Câu 1
A. \(2\log a + 3\log b\).
Lời giải
\(\log \left( {{a^2}{b^3}} \right)\)\( = \log {a^2} + \log {b^3}\)\( = 2\log a + 3\log b\). Chọn A.
Câu 2
A. \(a > 1,b > 1\).
Lời giải
Vì \({a^{\frac{1}{2}}} > {a^{\frac{1}{3}}}\) mà \(\frac{1}{2} > \frac{1}{3}\) nên \(a > 1\).
Vì \({b^{\frac{2}{3}}} > {b^{\frac{3}{4}}}\) mà \(\frac{2}{3} < \frac{3}{4}\) nên \(0 < b < 1\). Chọn B.
Câu 3
A. \(c < b < a\).
Lời giải
Hàm số \(y = {c^x}\) nghịch biến nên \(0 < c < 1\).
Hàm số \(y = {b^x};y = {\log _a}x\) đồng biến nên \(a > 1;b > 1\).
Đường thẳng \(y = 2\) cắt đồ thị hàm số \(y = {b^x}\) tại điểm có hoành độ là \(x = {\log _b}2 \in \left( {0;1} \right)\).
Suy ra \(b > 2\).
Đường thẳng \(y = 2\) cắt đồ thị hàm số \(y = {\log _a}x\) tại điểm có hoành độ \(x = {a^2} \in \left( {2;3} \right)\).
Do đó \(c < a < b\). Chọn D.
Câu 4
Số nghiệm của phương trình \(\left( {{x^2} + 2x - 3} \right)\left( {{{\log }_2}x - 3} \right) = 0\).
Số nghiệm của phương trình \(\left( {{x^2} + 2x - 3} \right)\left( {{{\log }_2}x - 3} \right) = 0\).
A. \(0\).
Lời giải
Điều kiện: \(x > 0\).
Ta có \(\left( {{x^2} + 2x - 3} \right)\left( {{{\log }_2}x - 3} \right) = 0\)\( \Leftrightarrow \left[ \begin{array}{l}{x^2} + 2x - 3 = 0\\{\log _2}x - 3 = 0\end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}x = 1;x = - 3\\x = 8\end{array} \right.\).
Kết hợp điều kiện, ta có \(x = 1;x = 8\).
Vậy phương trình có hai nghiệm. Chọn C.
Câu 5
A. \(\ln {e^2} = 2\).
Lời giải
\(\ln {e^2} = 2\ln e = 2\). Chọn A.
Câu 6
A. \(5\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
a) Hàm số \(y = g\left( x \right)\) có tập xác định là \(D = \mathbb{R}\).
b) Đồ thị hàm số \(y = g\left( x \right)\) đi qua điểm \(A\left( { - 1;1} \right)\).
c) Phương trình \({3^x} = {9^{{x^2} + 1}}\) có hai nghiệm thực phân biệt.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 8
Cho \(m = {\log _{ab}}a,n = {\log _{\sqrt[4]{{ab}}}}b\) với \(a\) và \(b\) là hai số thực lớn hơn 1.
Cho \(m = {\log _{ab}}a,n = {\log _{\sqrt[4]{{ab}}}}b\) với \(a\) và \(b\) là hai số thực lớn hơn 1.
a) \(m > 1\).
b) \(4m + n = 4\).
c) Biểu thức \(S = \frac{1}{m} + \frac{1}{n}\) đạt giá trị nhỏ nhất bằng \(\frac{5}{4}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
