Câu hỏi:

27/11/2025 10 Lưu

Cho \(m = {\log _{ab}}a,n = {\log _{\sqrt[4]{{ab}}}}b\) với \(a\) và \(b\) là hai số thực lớn hơn 1.

a) \(m > 1\).

Đúng
Sai

b) \(4m + n = 4\).

Đúng
Sai

c) Biểu thức \(S = \frac{1}{m} + \frac{1}{n}\) đạt giá trị nhỏ nhất bằng \(\frac{5}{4}\).

Đúng
Sai
d) \({\log _a}b = \frac{n}{{4m}}\).
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) \(m = {\log _{ab}}a = \frac{1}{{{{\log }_a}\left( {ab} \right)}} = \frac{1}{{1 + {{\log }_a}b}} < 1\).

b) Có \(4m + n = 4{\log _{ab}}a + {\log _{\sqrt[4]{{ab}}}}b\)\( = 4{\log _{ab}}a + 4{\log _{ab}}b\)\( = 4{\log _{ab}}\left( {ab} \right) = 4\).

c) Ta có \(n = {\log _{\sqrt[4]{{ab}}}}b = \frac{4}{{{{\log }_b}\left( {ab} \right)}} = \frac{4}{{1 + {{\log }_b}a}}\).

Khi đó \(S = \frac{1}{m} + \frac{1}{n}\)\( = 1 + {\log _a}b + \frac{{1 + {{\log }_b}a}}{4} = \frac{5}{4} + {\log _a}b + \frac{{{{\log }_b}a}}{4} \ge \frac{5}{4} + 2\sqrt {{{\log }_a}b \cdot \frac{{{{\log }_b}a}}{4}}  = \frac{9}{4}\).

d) \(\frac{n}{{4m}} = \frac{{4{{\log }_{ab}}b}}{{4{{\log }_{ab}}a}} = {\log _a}b\).

Đáp án: a) Sai;   b) Đúng;   c) Sai;    d) Đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Theo đề ta có \(22 + 50{e^{\frac{{ - 1}}{8}t}} = 45\)\( \Leftrightarrow {e^{\frac{{ - 1}}{8}t}} = \frac{{23}}{{50}}\)\( \Leftrightarrow \frac{{ - 1}}{8}t = \ln \frac{{23}}{{50}}\)\( \Leftrightarrow t = \ln \frac{{23}}{{50}}:\left( {\frac{{ - 1}}{8}} \right) \approx 6,21\).

Vậy sau khoảng 6,21 phút kể từ lúc pha chế xong thì nhiệt độ của đồ uống đó là 45°C.

Trả lời: 6,21.

Lời giải

Điều kiện \(\left\{ \begin{array}{l}2x - 1 > 0\\14 - x > 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x > \frac{1}{2}\\x < 14\end{array} \right.\)\( \Leftrightarrow \frac{1}{2} < x < 14\).

Ta có \({\log _2}\left( {2x - 1} \right) < {\log _2}\left( {14 - x} \right)\)\( \Leftrightarrow 2x - 1 < 14 - x\)\( \Leftrightarrow 3x < 15 \Leftrightarrow x < 5\).

Kết hợp với điều kiện ta có nghiệm của bất phương trình là \(\frac{1}{2} < x < 5\).

Mà \(x \in \mathbb{Z}\) nên \(x \in \left\{ {1;2;3;4} \right\}\).

Vậy bất phương trình có 4 nghiệm nguyên.

Trả lời: 4.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

a) Hàm số \(y = g\left( x \right)\) có tập xác định là \(D = \mathbb{R}\).

Đúng
Sai

b) Đồ thị hàm số \(y = g\left( x \right)\) đi qua điểm \(A\left( { - 1;1} \right)\).

Đúng
Sai

c) Phương trình \({3^x} = {9^{{x^2} + 1}}\) có hai nghiệm thực phân biệt.

Đúng
Sai
d) Hàm số \(y = f\left( x \right) = {3^x}\) nghịch biến trên \(\left( { - \infty ; + \infty } \right)\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(a > 1,b > 1\).

B. \(a > 1,0 < b < 1\).        
C. \(0 < a < 1,b > 1\).        
D. \(0 < a < 1,0 < b < 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP