Phần 3. Trắc nghiệm trả lời ngắn
Cho phương trình \({4^x} + {2^{x + 1}} - 3 = 0\) có nghiệm duy nhất là \(a\). Tính \(P = a{\log _3}4 + 1\).
Phần 3. Trắc nghiệm trả lời ngắn
Cho phương trình \({4^x} + {2^{x + 1}} - 3 = 0\) có nghiệm duy nhất là \(a\). Tính \(P = a{\log _3}4 + 1\).
Câu hỏi trong đề: Đề kiểm tra Toán 11 Cánh diều Chương 6 có đáp án !!
Quảng cáo
Trả lời:
\({4^x} + {2^{x + 1}} - 3 = 0\)\( \Leftrightarrow {2^{2x}} + 2 \cdot {2^x} - 3 = 0\)\( \Leftrightarrow \left[ \begin{array}{l}{2^x} = 1\\{2^x} = - 3\end{array} \right.\).
Vì \({2^x} > 0\) nên \({2^x} = 1\)\( \Leftrightarrow x = 0\).
Suy ra \(a = 0\). Do đó \(P = 0 \cdot {\log _3}4 + 1 = 1\).
Trả lời: 1.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Theo đề ta có \(22 + 50{e^{\frac{{ - 1}}{8}t}} = 45\)\( \Leftrightarrow {e^{\frac{{ - 1}}{8}t}} = \frac{{23}}{{50}}\)\( \Leftrightarrow \frac{{ - 1}}{8}t = \ln \frac{{23}}{{50}}\)\( \Leftrightarrow t = \ln \frac{{23}}{{50}}:\left( {\frac{{ - 1}}{8}} \right) \approx 6,21\).
Vậy sau khoảng 6,21 phút kể từ lúc pha chế xong thì nhiệt độ của đồ uống đó là 45°C.
Trả lời: 6,21.
Câu 2
A. \(c < b < a\).
Lời giải
Hàm số \(y = {c^x}\) nghịch biến nên \(0 < c < 1\).
Hàm số \(y = {b^x};y = {\log _a}x\) đồng biến nên \(a > 1;b > 1\).
Đường thẳng \(y = 2\) cắt đồ thị hàm số \(y = {b^x}\) tại điểm có hoành độ là \(x = {\log _b}2 \in \left( {0;1} \right)\).
Suy ra \(b > 2\).
Đường thẳng \(y = 2\) cắt đồ thị hàm số \(y = {\log _a}x\) tại điểm có hoành độ \(x = {a^2} \in \left( {2;3} \right)\).
Do đó \(c < a < b\). Chọn D.
Câu 3
a) Hàm số \(y = g\left( x \right)\) có tập xác định là \(D = \mathbb{R}\).
b) Đồ thị hàm số \(y = g\left( x \right)\) đi qua điểm \(A\left( { - 1;1} \right)\).
c) Phương trình \({3^x} = {9^{{x^2} + 1}}\) có hai nghiệm thực phân biệt.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(2\log a + 3\log b\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(a > 1,b > 1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Cho \(m = {\log _{ab}}a,n = {\log _{\sqrt[4]{{ab}}}}b\) với \(a\) và \(b\) là hai số thực lớn hơn 1.
Cho \(m = {\log _{ab}}a,n = {\log _{\sqrt[4]{{ab}}}}b\) với \(a\) và \(b\) là hai số thực lớn hơn 1.
a) \(m > 1\).
b) \(4m + n = 4\).
c) Biểu thức \(S = \frac{1}{m} + \frac{1}{n}\) đạt giá trị nhỏ nhất bằng \(\frac{5}{4}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
