29 câu trắc nghiệm Toán 11 Cánh diều Giới hạn của hàm số có đáp án
23 người thi tuần này 4.6 109 lượt thi 29 câu hỏi 60 phút
🔥 Đề thi HOT:
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)
12 câu Trắc nghiệm Toán 11 Kết nối tri thức Giá trị lượng giác của góc lượng giác có đáp án
38 câu trắc nghiệm Toán 11 Kết nối tri thức Lôgarit có đáp án
Bài tập Tổ hợp - Xác suất cơ bản, nâng cao có lời giải chi tiết (P6)
Bài tập Lượng giác lớp 11 cơ bản, nâng cao có lời giải (P1)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Vì giới hạn đã cho tồn tại nên \[\mathop {{\rm{lim}}}\limits_{{\rm{x}} \to {\rm{1}}} \left( {\sqrt {\left( {{\rm{a + 5}}} \right){{\rm{x}}^{\rm{2}}} - {\rm{2}}\left( {{\rm{a + 2}}} \right){\rm{x + 2a + b + 7}}} - \sqrt {{\rm{6x + 3}}} } \right){\rm{ = 0}}\]
\[ \Rightarrow \sqrt {{\rm{a + b + 8}}} - {\rm{3 = 0}} \Rightarrow {\rm{b = 1}} - {\rm{a}}\]
Khi đó\[\mathop {\lim }\limits_{{\rm{x}} \to 1} \frac{{\sqrt {\left( {{\rm{a + 5}}} \right){{\rm{x}}^{\rm{2}}} - {\rm{2}}\left( {{\rm{a + 2}}} \right){\rm{x + 2a + b + 7}}} - \sqrt {{\rm{6x + 3}}} }}{{{{\rm{x}}^{\rm{2}}} - {\rm{2x + 1}}}}{\rm{ = }}\frac{{13}}{{12}}\]
\[ \Rightarrow \mathop {{\rm{lim}}}\limits_{{\rm{x}} \to {\rm{1}}} \frac{{\sqrt {\left( {{\rm{a + 5}}} \right){{\rm{x}}^{\rm{2}}} - {\rm{2}}\left( {{\rm{a + 2}}} \right){\rm{x + a + 8}}} - \sqrt {{\rm{6x + 3}}} }}{{{{\rm{x}}^{\rm{2}}} - {\rm{2x + 1}}}}{\rm{ = }}\frac{{{\rm{13}}}}{{{\rm{12}}}}\]
\[ \Rightarrow \mathop {{\rm{lim}}}\limits_{{\rm{x}} \to {\rm{1}}} \frac{{{\rm{a + 5}}}}{{\left( {\sqrt {{\rm{(a + 5)}}{{\rm{x}}^{\rm{2}}} - {\rm{2(a + 2)x + a + 8}}} {\rm{ + }}\sqrt {{\rm{6x + 3}}} } \right)}}{\rm{ = }}\frac{{{\rm{13}}}}{{{\rm{12}}}}\]
\[ \Leftrightarrow \frac{{{\rm{a}} + 5}}{6} = \frac{{13}}{{12}} \Leftrightarrow {\rm{a}} = \frac{3}{2} \Rightarrow {\rm{b}} = - \frac{1}{2} \Rightarrow {{\rm{a}}^{\rm{2}}}{\rm{ + }}{{\rm{b}}^{\rm{2}}} = \frac{5}{2}\]
Chọn đáp án B
Đáp án cần chọn là: B
Lời giải
Vì\[\mathop {\lim }\limits_{{\rm{x}} \to 3} \frac{{{\rm{P}}\left( {\rm{x}} \right) - 2}}{{{\rm{x}} - 3}} = 2 \Rightarrow {\rm{P}}\left( 3 \right) - 2 = 0 \Rightarrow {\rm{P}}\left( {\rm{3}} \right) = 2\]
Ta có:\[\mathop {\lim }\limits_{{\rm{x}} \to 3} \frac{{{\rm{P}}\left( {\rm{x}} \right) - 2}}{{\left( {{{\rm{x}}^2} - 9} \right)\left( {\sqrt {{\rm{P}}\left( {\rm{x}} \right) + 2} + 1} \right)}} = \mathop {\lim }\limits_{{\rm{x}} \to 3} \frac{{{\rm{P}}\left( {\rm{x}} \right) - 2}}{{\left( {{\rm{x}} - 3} \right)}}.\frac{1}{{\left( {{\rm{x}} + 3} \right)\left( {\sqrt {{\rm{P}}\left( {\rm{x}} \right) + 2} + 1} \right)}}\]
\[ = \mathop {\lim }\limits_{{\rm{x}} \to 3} \frac{{{\rm{P}}\left( {\rm{x}} \right) - 2}}{{\left( {{\rm{x}} - 3} \right)}}.\mathop {\lim }\limits_{{\rm{x}} \to 3} \frac{1}{{\left( {{\rm{x}} + 3} \right)\left( {\sqrt {{\rm{P}}\left( {\rm{x}} \right) + 2} + 1} \right)}} = 2.\frac{1}{{\left( {3 + 3} \right)\left( {\sqrt {2 + 2} + 1} \right)}} = \frac{1}{9}\]
Chọn đáp án C
Đáp án cần chọn là: C
Đáp án cần chọn là: A
Lời giải
Vì\[\mathop {\lim }\limits_{{\rm{x}} \to 4} \frac{{{\rm{f}}\left( {\rm{x}} \right) - 5}}{{{\rm{x}} - 4}} = 5\]nên \[{\rm{f}}\left( 4 \right) - 5 = 0 \Rightarrow {\rm{f}}\left( 4 \right) = 5\]
Ta có:
\[\mathop {\lim }\limits_{{\rm{x}} \to 4} \frac{{{\rm{f}}\left( {\rm{x}} \right) - 5}}{{\left( {\sqrt {\rm{x}} - 2)(\sqrt {6{\rm{f}}\left( {\rm{x}} \right) + 6} + 4} \right)}} = \mathop {\lim }\limits_{{\rm{x}} \to 4} \frac{{{\rm{f}}\left( {\rm{x}} \right) - 5}}{{{\rm{x}} - 4}}.\mathop {\lim }\limits_{{\rm{x}} \to 4} \frac{{\sqrt {\rm{x}} + 2}}{{\sqrt {6{\rm{f}}\left( {\rm{x}} \right) + 6} + 4}} = 5.\frac{{\sqrt 2 + 2}}{{\sqrt {6.{\rm{f}}\left( 4 \right) + 6} + 4}} = 2\]Chọn đáp án C
Đáp án cần chọn là: C
Lời giải
Ta có\[\mathop {\lim }\limits_{{\rm{x}} \to + \infty } \left( {\sqrt {2020{{\rm{x}}^2} + {\rm{x}} + 3} - \sqrt {2021{{\rm{x}}^2} + 2} } \right) = \mathop {\lim }\limits_{{\rm{x}} \to + \infty } \left[ {{\rm{x}}\left( {\sqrt {2020 + \frac{1}{{\rm{x}}} + \frac{3}{{{{\rm{x}}^2}}}} - \sqrt {2021 + \frac{2}{{{{\rm{x}}^2}}}} } \right)} \right]\]
Vì\[\mathop {\lim }\limits_{{\rm{x}} \to + \infty } {\rm{x}} = + \infty ,\mathop {\lim }\limits_{{\rm{x}} \to \infty } \left( {\sqrt {2020 + \frac{1}{{\rm{x}}} + \frac{3}{{{{\rm{x}}^2}}}} - \sqrt {2021 + \frac{2}{{{{\rm{x}}^2}}}} } \right) = \sqrt {2020} - \sqrt {2021} < 0\]
\[ \Rightarrow \mathop {\lim }\limits_{{\rm{x}} \to + \infty } \left[ {{\rm{x}}\left( {\sqrt {2020 + \frac{{\rm{1}}}{{\rm{x}}} + \frac{3}{{{{\rm{x}}^2}}}} - \sqrt {2021 + \frac{2}{{{{\rm{x}}^2}}}} } \right)} \right] = - \infty \]
Chọn đáp án A
Lời giải
Ta có:
\[\sin {\rm{x}} - \cos {\rm{x}} = \sqrt 2 \sin \left( {{\rm{x}} - \frac{{\rm{\pi }}}{4}} \right)\]
\[\tan \left( {{\rm{x}} - \frac{{\rm{\pi }}}{4}} \right) = \frac{{\sin \left( {{\rm{x}} - \frac{{\rm{\pi }}}{{\rm{4}}}} \right)}}{{\cos \left( {{\rm{x}} - \frac{{\rm{\pi }}}{{\rm{4}}}} \right)}}\]
\[\mathop {\lim }\limits_{{\rm{x}} \to \frac{{\rm{\pi }}}{4}} \frac{{\sin {\rm{x}} - \cos {\rm{x}}}}{{\tan \left( {{\rm{x}} - \frac{{\rm{\pi }}}{4}} \right)}} = \mathop {\lim }\limits_{{\rm{x}} \to \frac{{\rm{\pi }}}{4}} \frac{{\sqrt 2 \sin \left( {{\rm{x}} - \frac{{\rm{\pi }}}{4}} \right).\cos \left( {{\rm{x}} - \frac{{\rm{\pi }}}{4}} \right)}}{{\sin \left( {{\rm{x}} - \frac{{\rm{\pi }}}{4}} \right)}} = \mathop {\lim }\limits_{{\rm{x}} \to \frac{{\rm{\pi }}}{4}} \sqrt 2 \cos \left( {{\rm{x}} - \frac{{\rm{\pi }}}{4}} \right) = \sqrt 2 \]
Chọn đáp án B
Đáp án cần chọn là: B
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
22 Đánh giá
50%
40%
0%
0%
0%